DeePKS + ABACUS as a Bridge between Expensive Quantum Mechanical Models and Machine Learning Potentials Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1021/acs.jpca.2c05000
Recently, the development of machine learning (ML) potentials has made it possible to perform large-scale and long-time molecular simulations with the accuracy of quantum mechanical (QM) models. However, for different levels of QM methods, such as density functional theory (DFT) at the meta-GGA level and/or with exact exchange, quantum Monte Carlo, etc., generating a sufficient amount of data for training an ML potential has remained computationally challenging due to their high cost. In this work, we demonstrate that this issue can be largely alleviated with Deep Kohn-Sham (DeePKS), an ML-based DFT model. DeePKS employs a computationally efficient neural network-based functional model to construct a correction term added upon a cheap DFT model. Upon training, DeePKS offers closely matched energies and forces compared with high-level QM method, but the number of training data required is orders of magnitude less than that required for training a reliable ML potential. As such, DeePKS can serve as a bridge between expensive QM models and ML potentials: one can generate a decent amount of high-accuracy QM data to train a DeePKS model and then use the DeePKS model to label a much larger amount of configurations to train an ML potential. This scheme for periodic systems is implemented in a DFT package ABACUS, which is open source and ready for use in various applications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1021/acs.jpca.2c05000
- OA Status
- green
- Cited By
- 13
- References
- 60
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4310599503
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4310599503Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1021/acs.jpca.2c05000Digital Object Identifier
- Title
-
DeePKS + ABACUS as a Bridge between Expensive Quantum Mechanical Models and Machine Learning PotentialsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-01Full publication date if available
- Authors
-
Wenfei Li, Qi Ou, Yixiao Chen, Yu Cao, Renxi Liu, Chunyi Zhang, Daye Zheng, Chun Cai, Xifan Wu, Han Wang, Mohan Chen, Linfeng ZhangList of authors in order
- Landing page
-
https://doi.org/10.1021/acs.jpca.2c05000Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.osti.gov/biblio/1994169Direct OA link when available
- Concepts
-
Computer science, Bridge (graph theory), Density functional theory, Quantum, Abacus (architecture), Monte Carlo method, Quantum Monte Carlo, Construct (python library), Artificial intelligence, Algorithm, Chemistry, Mathematics, Computational chemistry, Physics, Quantum mechanics, Archaeology, Statistics, History, Medicine, Programming language, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 3, 2023: 4Per-year citation counts (last 5 years)
- References (count)
-
60Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4310599503 |
|---|---|
| doi | https://doi.org/10.1021/acs.jpca.2c05000 |
| ids.doi | https://doi.org/10.1021/acs.jpca.2c05000 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36455227 |
| ids.openalex | https://openalex.org/W4310599503 |
| fwci | 1.59902021 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D011789 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Quantum Theory |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000069550 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Machine Learning |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D009010 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Monte Carlo Method |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D011789 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Quantum Theory |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000069550 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Machine Learning |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D009010 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Monte Carlo Method |
| type | article |
| title | DeePKS + ABACUS as a Bridge between Expensive Quantum Mechanical Models and Machine Learning Potentials |
| awards[0].id | https://openalex.org/G1880452019 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 12122103 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G4038374779 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 12122401 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G1458622613 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 11871110 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| awards[3].id | https://openalex.org/G4830833928 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 12074007 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| awards[4].id | https://openalex.org/G6675017159 |
| awards[4].funder_id | https://openalex.org/F4320321001 |
| awards[4].display_name | |
| awards[4].funder_award_id | 12135002 |
| awards[4].funder_display_name | National Natural Science Foundation of China |
| awards[5].id | https://openalex.org/G7950878311 |
| awards[5].funder_id | https://openalex.org/F4320337367 |
| awards[5].display_name | |
| awards[5].funder_award_id | DMR-2053195 |
| awards[5].funder_display_name | Division of Materials Research |
| biblio.issue | 49 |
| biblio.volume | 126 |
| biblio.last_page | 9164 |
| biblio.first_page | 9154 |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| topics[1].id | https://openalex.org/T10044 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9968000054359436 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Protein Structure and Dynamics |
| topics[2].id | https://openalex.org/T10002 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9957000017166138 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3107 |
| topics[2].subfield.display_name | Atomic and Molecular Physics, and Optics |
| topics[2].display_name | Advanced Chemical Physics Studies |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320337367 |
| funders[1].ror | https://ror.org/01pc7k308 |
| funders[1].display_name | Division of Materials Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6514163613319397 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C100776233 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6010668277740479 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2532492 |
| concepts[1].display_name | Bridge (graph theory) |
| concepts[2].id | https://openalex.org/C152365726 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5944749116897583 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1048589 |
| concepts[2].display_name | Density functional theory |
| concepts[3].id | https://openalex.org/C84114770 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5759770274162292 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q46344 |
| concepts[3].display_name | Quantum |
| concepts[4].id | https://openalex.org/C205724471 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5672714114189148 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q208454 |
| concepts[4].display_name | Abacus (architecture) |
| concepts[5].id | https://openalex.org/C19499675 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5202856659889221 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[5].display_name | Monte Carlo method |
| concepts[6].id | https://openalex.org/C16016025 |
| concepts[6].level | 3 |
| concepts[6].score | 0.48640182614326477 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3861408 |
| concepts[6].display_name | Quantum Monte Carlo |
| concepts[7].id | https://openalex.org/C2780801425 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45733386278152466 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5164392 |
| concepts[7].display_name | Construct (python library) |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3679385185241699 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3546805679798126 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C185592680 |
| concepts[10].level | 0 |
| concepts[10].score | 0.17516294121742249 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[10].display_name | Chemistry |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.16978353261947632 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C147597530 |
| concepts[12].level | 1 |
| concepts[12].score | 0.16771182417869568 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q369472 |
| concepts[12].display_name | Computational chemistry |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1421140730381012 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.12197113037109375 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| concepts[15].id | https://openalex.org/C166957645 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[15].display_name | Archaeology |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C95457728 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q309 |
| concepts[17].display_name | History |
| concepts[18].id | https://openalex.org/C71924100 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[18].display_name | Medicine |
| concepts[19].id | https://openalex.org/C199360897 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[19].display_name | Programming language |
| concepts[20].id | https://openalex.org/C126322002 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[20].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6514163613319397 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/bridge |
| keywords[1].score | 0.6010668277740479 |
| keywords[1].display_name | Bridge (graph theory) |
| keywords[2].id | https://openalex.org/keywords/density-functional-theory |
| keywords[2].score | 0.5944749116897583 |
| keywords[2].display_name | Density functional theory |
| keywords[3].id | https://openalex.org/keywords/quantum |
| keywords[3].score | 0.5759770274162292 |
| keywords[3].display_name | Quantum |
| keywords[4].id | https://openalex.org/keywords/abacus |
| keywords[4].score | 0.5672714114189148 |
| keywords[4].display_name | Abacus (architecture) |
| keywords[5].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[5].score | 0.5202856659889221 |
| keywords[5].display_name | Monte Carlo method |
| keywords[6].id | https://openalex.org/keywords/quantum-monte-carlo |
| keywords[6].score | 0.48640182614326477 |
| keywords[6].display_name | Quantum Monte Carlo |
| keywords[7].id | https://openalex.org/keywords/construct |
| keywords[7].score | 0.45733386278152466 |
| keywords[7].display_name | Construct (python library) |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.3679385185241699 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.3546805679798126 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/chemistry |
| keywords[10].score | 0.17516294121742249 |
| keywords[10].display_name | Chemistry |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.16978353261947632 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/computational-chemistry |
| keywords[12].score | 0.16771182417869568 |
| keywords[12].display_name | Computational chemistry |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.1421140730381012 |
| keywords[13].display_name | Physics |
| keywords[14].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[14].score | 0.12197113037109375 |
| keywords[14].display_name | Quantum mechanics |
| language | en |
| locations[0].id | doi:10.1021/acs.jpca.2c05000 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S146709414 |
| locations[0].source.issn | 1089-5639, 1520-5215 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1089-5639 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | The Journal of Physical Chemistry A |
| locations[0].source.host_organization | https://openalex.org/P4310320006 |
| locations[0].source.host_organization_name | American Chemical Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320006 |
| locations[0].source.host_organization_lineage_names | American Chemical Society |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The Journal of Physical Chemistry A |
| locations[0].landing_page_url | https://doi.org/10.1021/acs.jpca.2c05000 |
| locations[1].id | pmid:36455227 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | The journal of physical chemistry. A |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36455227 |
| locations[2].id | pmh:oai:osti.gov:1994169 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402487 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[2].source.host_organization | https://openalex.org/I139351228 |
| locations[2].source.host_organization_name | Office of Scientific and Technical Information |
| locations[2].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.osti.gov/biblio/1994169 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5100400651 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7236-977X |
| authorships[0].author.display_name | Wenfei Li |
| authorships[0].affiliations[0].raw_affiliation_string | AI for Science Institute, Beijing100080, P. R. China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wenfei Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | AI for Science Institute, Beijing100080, P. R. China |
| authorships[1].author.id | https://openalex.org/A5076380278 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6400-7522 |
| authorships[1].author.display_name | Qi Ou |
| authorships[1].affiliations[0].raw_affiliation_string | AI for Science Institute, Beijing100080, P. R. China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qi Ou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | AI for Science Institute, Beijing100080, P. R. China |
| authorships[2].author.id | https://openalex.org/A5035522231 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8201-5887 |
| authorships[2].author.display_name | Yixiao Chen |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I20089843 |
| authorships[2].affiliations[0].raw_affiliation_string | Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey08544, United States |
| authorships[2].institutions[0].id | https://openalex.org/I20089843 |
| authorships[2].institutions[0].ror | https://ror.org/00hx57361 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I20089843 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Princeton University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yixiao Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey08544, United States |
| authorships[3].author.id | https://openalex.org/A5118704560 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9134-8680 |
| authorships[3].author.display_name | Yu Cao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[3].affiliations[0].raw_affiliation_string | HEDPS, CAPT, College of Engineering and School of Physics, Peking University, Beijing100871, P. R. China |
| authorships[3].institutions[0].id | https://openalex.org/I20231570 |
| authorships[3].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Peking University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yu Cao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | HEDPS, CAPT, College of Engineering and School of Physics, Peking University, Beijing100871, P. R. China |
| authorships[4].author.id | https://openalex.org/A5050729289 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5288-4149 |
| authorships[4].author.display_name | Renxi Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[4].affiliations[0].raw_affiliation_string | HEDPS, CAPT, College of Engineering and School of Physics, Peking University, Beijing100871, P. R. China |
| authorships[4].institutions[0].id | https://openalex.org/I20231570 |
| authorships[4].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Peking University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Renxi Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | HEDPS, CAPT, College of Engineering and School of Physics, Peking University, Beijing100871, P. R. China |
| authorships[5].author.id | https://openalex.org/A5044350152 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4146-703X |
| authorships[5].author.display_name | Chunyi Zhang |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I84392919 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Physics, Temple University, Philadelphia, Pennsylvania19122, United States |
| authorships[5].institutions[0].id | https://openalex.org/I84392919 |
| authorships[5].institutions[0].ror | https://ror.org/00kx1jb78 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I84392919 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Temple University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chunyi Zhang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Physics, Temple University, Philadelphia, Pennsylvania19122, United States |
| authorships[6].author.id | https://openalex.org/A5059189067 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Daye Zheng |
| authorships[6].affiliations[0].raw_affiliation_string | AI for Science Institute, Beijing100080, P. R. China |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Daye Zheng |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | AI for Science Institute, Beijing100080, P. R. China |
| authorships[7].author.id | https://openalex.org/A5101661330 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6242-0439 |
| authorships[7].author.display_name | Chun Cai |
| authorships[7].affiliations[0].raw_affiliation_string | DP Technology, Beijing100080, P. R. China |
| authorships[7].affiliations[1].raw_affiliation_string | AI for Science Institute, Beijing100080, P. R. China |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Chun Cai |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | AI for Science Institute, Beijing100080, P. R. China, DP Technology, Beijing100080, P. R. China |
| authorships[8].author.id | https://openalex.org/A5045123888 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-6561-8942 |
| authorships[8].author.display_name | Xifan Wu |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I84392919 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Physics, Temple University, Philadelphia, Pennsylvania19122, United States |
| authorships[8].institutions[0].id | https://openalex.org/I84392919 |
| authorships[8].institutions[0].ror | https://ror.org/00kx1jb78 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I84392919 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Temple University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Xifan Wu |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Physics, Temple University, Philadelphia, Pennsylvania19122, United States |
| authorships[9].author.id | https://openalex.org/A5100452643 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-5623-1148 |
| authorships[9].author.display_name | Han Wang |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I4210145278 |
| authorships[9].affiliations[0].raw_affiliation_string | Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Huayuan Road 6, Beijing100088, P. R. China |
| authorships[9].institutions[0].id | https://openalex.org/I4210145278 |
| authorships[9].institutions[0].ror | https://ror.org/03sxpbt26 |
| authorships[9].institutions[0].type | facility |
| authorships[9].institutions[0].lineage | https://openalex.org/I4210145278 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | Institute of Applied Physics and Computational Mathematics |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Han Wang |
| authorships[9].is_corresponding | True |
| authorships[9].raw_affiliation_strings | Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Huayuan Road 6, Beijing100088, P. R. China |
| authorships[10].author.id | https://openalex.org/A5076410530 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-8071-5633 |
| authorships[10].author.display_name | Mohan Chen |
| authorships[10].countries | CN |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[10].affiliations[0].raw_affiliation_string | HEDPS, CAPT, College of Engineering and School of Physics, Peking University, Beijing100871, P. R. China |
| authorships[10].institutions[0].id | https://openalex.org/I20231570 |
| authorships[10].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[10].institutions[0].country_code | CN |
| authorships[10].institutions[0].display_name | Peking University |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Mohan Chen |
| authorships[10].is_corresponding | True |
| authorships[10].raw_affiliation_strings | HEDPS, CAPT, College of Engineering and School of Physics, Peking University, Beijing100871, P. R. China |
| authorships[11].author.id | https://openalex.org/A5100689117 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-8470-5846 |
| authorships[11].author.display_name | Linfeng Zhang |
| authorships[11].affiliations[0].raw_affiliation_string | AI for Science Institute, Beijing100080, P. R. China |
| authorships[11].affiliations[1].raw_affiliation_string | DP Technology, Beijing100080, P. R. China |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Linfeng Zhang |
| authorships[11].is_corresponding | True |
| authorships[11].raw_affiliation_strings | AI for Science Institute, Beijing100080, P. R. China, DP Technology, Beijing100080, P. R. China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.osti.gov/biblio/1994169 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | DeePKS + ABACUS as a Bridge between Expensive Quantum Mechanical Models and Machine Learning Potentials |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W221518970, https://openalex.org/W2404584980, https://openalex.org/W3093483503, https://openalex.org/W4205975583, https://openalex.org/W2353774342, https://openalex.org/W1994523751, https://openalex.org/W2625415812, https://openalex.org/W2054501881, https://openalex.org/W2315488296, https://openalex.org/W2351084326 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:osti.gov:1994169 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402487 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| best_oa_location.source.host_organization | https://openalex.org/I139351228 |
| best_oa_location.source.host_organization_name | Office of Scientific and Technical Information |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://www.osti.gov/biblio/1994169 |
| primary_location.id | doi:10.1021/acs.jpca.2c05000 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S146709414 |
| primary_location.source.issn | 1089-5639, 1520-5215 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1089-5639 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | The Journal of Physical Chemistry A |
| primary_location.source.host_organization | https://openalex.org/P4310320006 |
| primary_location.source.host_organization_name | American Chemical Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320006 |
| primary_location.source.host_organization_lineage_names | American Chemical Society |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The Journal of Physical Chemistry A |
| primary_location.landing_page_url | https://doi.org/10.1021/acs.jpca.2c05000 |
| publication_date | 2022-12-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W1986982278, https://openalex.org/W2018415001, https://openalex.org/W2155155530, https://openalex.org/W2095145098, https://openalex.org/W2147993766, https://openalex.org/W2046001409, https://openalex.org/W3005892601, https://openalex.org/W2056661808, https://openalex.org/W2122199548, https://openalex.org/W2334972670, https://openalex.org/W2144062946, https://openalex.org/W2007712274, https://openalex.org/W2230728100, https://openalex.org/W1981368803, https://openalex.org/W2005069114, https://openalex.org/W2760917849, https://openalex.org/W3199378223, https://openalex.org/W2980902481, https://openalex.org/W2094888156, https://openalex.org/W2499947522, https://openalex.org/W2025444507, https://openalex.org/W2083415705, https://openalex.org/W2541404351, https://openalex.org/W2742127985, https://openalex.org/W4226530413, https://openalex.org/W2095198441, https://openalex.org/W2312878083, https://openalex.org/W2312528888, https://openalex.org/W3023962374, https://openalex.org/W3046877548, https://openalex.org/W2963334464, https://openalex.org/W2009359866, https://openalex.org/W2963657244, https://openalex.org/W2235977407, https://openalex.org/W3043479795, https://openalex.org/W3043238520, https://openalex.org/W4200371263, https://openalex.org/W4281937313, https://openalex.org/W3115734691, https://openalex.org/W2775708988, https://openalex.org/W3006005697, https://openalex.org/W2030976617, https://openalex.org/W1982356449, https://openalex.org/W2094341539, https://openalex.org/W2148424525, https://openalex.org/W2141704677, https://openalex.org/W2078571947, https://openalex.org/W4221154253, https://openalex.org/W4211254350, https://openalex.org/W2898391453, https://openalex.org/W2019465613, https://openalex.org/W2075414432, https://openalex.org/W2314762912, https://openalex.org/W4220709636, https://openalex.org/W2033428036, https://openalex.org/W2045238980, https://openalex.org/W1997630751, https://openalex.org/W3098509317, https://openalex.org/W3103736477, https://openalex.org/W3123843282 |
| referenced_works_count | 60 |
| abstract_inverted_index.a | 53, 94, 103, 108, 143, 153, 165, 174, 185, 204 |
| abstract_inverted_index.As | 147 |
| abstract_inverted_index.In | 72 |
| abstract_inverted_index.ML | 61, 145, 160, 194 |
| abstract_inverted_index.QM | 32, 124, 157, 170 |
| abstract_inverted_index.an | 60, 88, 193 |
| abstract_inverted_index.as | 35, 152 |
| abstract_inverted_index.at | 40 |
| abstract_inverted_index.be | 81 |
| abstract_inverted_index.in | 203, 216 |
| abstract_inverted_index.is | 133, 201, 209 |
| abstract_inverted_index.it | 10 |
| abstract_inverted_index.of | 3, 22, 31, 56, 129, 135, 168, 189 |
| abstract_inverted_index.to | 12, 68, 101, 172, 183, 191 |
| abstract_inverted_index.we | 75 |
| abstract_inverted_index.DFT | 90, 110, 205 |
| abstract_inverted_index.and | 15, 119, 159, 177, 212 |
| abstract_inverted_index.but | 126 |
| abstract_inverted_index.can | 80, 150, 163 |
| abstract_inverted_index.due | 67 |
| abstract_inverted_index.for | 28, 58, 141, 198, 214 |
| abstract_inverted_index.has | 8, 63 |
| abstract_inverted_index.one | 162 |
| abstract_inverted_index.the | 1, 20, 41, 127, 180 |
| abstract_inverted_index.use | 179, 215 |
| abstract_inverted_index.(ML) | 6 |
| abstract_inverted_index.(QM) | 25 |
| abstract_inverted_index.Deep | 85 |
| abstract_inverted_index.This | 196 |
| abstract_inverted_index.Upon | 112 |
| abstract_inverted_index.data | 57, 131, 171 |
| abstract_inverted_index.high | 70 |
| abstract_inverted_index.less | 137 |
| abstract_inverted_index.made | 9 |
| abstract_inverted_index.much | 186 |
| abstract_inverted_index.open | 210 |
| abstract_inverted_index.such | 34 |
| abstract_inverted_index.term | 105 |
| abstract_inverted_index.than | 138 |
| abstract_inverted_index.that | 77, 139 |
| abstract_inverted_index.then | 178 |
| abstract_inverted_index.this | 73, 78 |
| abstract_inverted_index.upon | 107 |
| abstract_inverted_index.with | 19, 45, 84, 122 |
| abstract_inverted_index.(DFT) | 39 |
| abstract_inverted_index.Monte | 49 |
| abstract_inverted_index.added | 106 |
| abstract_inverted_index.cheap | 109 |
| abstract_inverted_index.cost. | 71 |
| abstract_inverted_index.etc., | 51 |
| abstract_inverted_index.exact | 46 |
| abstract_inverted_index.issue | 79 |
| abstract_inverted_index.label | 184 |
| abstract_inverted_index.level | 43 |
| abstract_inverted_index.model | 100, 176, 182 |
| abstract_inverted_index.ready | 213 |
| abstract_inverted_index.serve | 151 |
| abstract_inverted_index.such, | 148 |
| abstract_inverted_index.their | 69 |
| abstract_inverted_index.train | 173, 192 |
| abstract_inverted_index.which | 208 |
| abstract_inverted_index.work, | 74 |
| abstract_inverted_index.Carlo, | 50 |
| abstract_inverted_index.DeePKS | 92, 114, 149, 175, 181 |
| abstract_inverted_index.amount | 55, 167, 188 |
| abstract_inverted_index.and/or | 44 |
| abstract_inverted_index.bridge | 154 |
| abstract_inverted_index.decent | 166 |
| abstract_inverted_index.forces | 120 |
| abstract_inverted_index.larger | 187 |
| abstract_inverted_index.levels | 30 |
| abstract_inverted_index.model. | 91, 111 |
| abstract_inverted_index.models | 158 |
| abstract_inverted_index.neural | 97 |
| abstract_inverted_index.number | 128 |
| abstract_inverted_index.offers | 115 |
| abstract_inverted_index.orders | 134 |
| abstract_inverted_index.scheme | 197 |
| abstract_inverted_index.source | 211 |
| abstract_inverted_index.theory | 38 |
| abstract_inverted_index.ABACUS, | 207 |
| abstract_inverted_index.between | 155 |
| abstract_inverted_index.closely | 116 |
| abstract_inverted_index.density | 36 |
| abstract_inverted_index.employs | 93 |
| abstract_inverted_index.largely | 82 |
| abstract_inverted_index.machine | 4 |
| abstract_inverted_index.matched | 117 |
| abstract_inverted_index.method, | 125 |
| abstract_inverted_index.models. | 26 |
| abstract_inverted_index.package | 206 |
| abstract_inverted_index.perform | 13 |
| abstract_inverted_index.quantum | 23, 48 |
| abstract_inverted_index.systems | 200 |
| abstract_inverted_index.various | 217 |
| abstract_inverted_index.However, | 27 |
| abstract_inverted_index.ML-based | 89 |
| abstract_inverted_index.accuracy | 21 |
| abstract_inverted_index.compared | 121 |
| abstract_inverted_index.energies | 118 |
| abstract_inverted_index.generate | 164 |
| abstract_inverted_index.learning | 5 |
| abstract_inverted_index.meta-GGA | 42 |
| abstract_inverted_index.methods, | 33 |
| abstract_inverted_index.periodic | 199 |
| abstract_inverted_index.possible | 11 |
| abstract_inverted_index.reliable | 144 |
| abstract_inverted_index.remained | 64 |
| abstract_inverted_index.required | 132, 140 |
| abstract_inverted_index.training | 59, 130, 142 |
| abstract_inverted_index.(DeePKS), | 87 |
| abstract_inverted_index.Kohn-Sham | 86 |
| abstract_inverted_index.Recently, | 0 |
| abstract_inverted_index.construct | 102 |
| abstract_inverted_index.different | 29 |
| abstract_inverted_index.efficient | 96 |
| abstract_inverted_index.exchange, | 47 |
| abstract_inverted_index.expensive | 156 |
| abstract_inverted_index.long-time | 16 |
| abstract_inverted_index.magnitude | 136 |
| abstract_inverted_index.molecular | 17 |
| abstract_inverted_index.potential | 62 |
| abstract_inverted_index.training, | 113 |
| abstract_inverted_index.alleviated | 83 |
| abstract_inverted_index.correction | 104 |
| abstract_inverted_index.functional | 37, 99 |
| abstract_inverted_index.generating | 52 |
| abstract_inverted_index.high-level | 123 |
| abstract_inverted_index.mechanical | 24 |
| abstract_inverted_index.potential. | 146, 195 |
| abstract_inverted_index.potentials | 7 |
| abstract_inverted_index.sufficient | 54 |
| abstract_inverted_index.challenging | 66 |
| abstract_inverted_index.demonstrate | 76 |
| abstract_inverted_index.development | 2 |
| abstract_inverted_index.implemented | 202 |
| abstract_inverted_index.large-scale | 14 |
| abstract_inverted_index.potentials: | 161 |
| abstract_inverted_index.simulations | 18 |
| abstract_inverted_index.applications. | 218 |
| abstract_inverted_index.high-accuracy | 169 |
| abstract_inverted_index.network-based | 98 |
| abstract_inverted_index.configurations | 190 |
| abstract_inverted_index.computationally | 65, 95 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5100689117, https://openalex.org/A5100452643, https://openalex.org/A5076410530 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 12 |
| corresponding_institution_ids | https://openalex.org/I20231570, https://openalex.org/I4210145278 |
| citation_normalized_percentile.value | 0.73924277 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |