Deeply Self-Supervising Edge-to-Contour Neural Network Applied to Liver Segmentation. Article Swipe
YOU?
·
· 2018
· Open Access
·
Objective: Herein, a neural network-based liver segmentation algorithm is proposed, and its performance was evaluated using abdominal computed tomography (CT) images. Methods: A fully convolutional network was developed to overcome the volumetric image segmentation problem. To guide a neural network to accurately delineate a target liver object, the network was deeply supervised by applying the adaptive self-supervision scheme to derive the essential contour, which acted as a complement with the global shape. The discriminative contour, shape, and deep features were internally merged for the segmentation results. Results and Conclusion: 160 abdominal CT images were used for training and validation. The quantitative evaluation of the proposed network was performed through an eight-fold cross-validation. The result showed that the method, which uses the contour feature, segmented the liver more accurately than the state-of-the-art with a 2.13% improvement in the dice score. Significance: In this study, a new framework was introduced to guide a neural network and learn complementary contour features. The proposed neural network demonstrates that the guided contour features can significantly improve the performance of the segmentation task.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://arxiv.org/abs/1808.00739v1
- OA Status
- green
- Cited By
- 3
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2886435763
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2886435763Canonical identifier for this work in OpenAlex
- Title
-
Deeply Self-Supervising Edge-to-Contour Neural Network Applied to Liver Segmentation.Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-08-02Full publication date if available
- Authors
-
Minyoung Chung, Jingyu Lee, Min-Kyung Lee, Jeongjin Lee, Yeong-Gil ShinList of authors in order
- Landing page
-
https://arxiv.org/abs/1808.00739v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/abs/1808.00739v1Direct OA link when available
- Concepts
-
Artificial intelligence, Segmentation, Computer science, Pattern recognition (psychology), Convolutional neural network, Discriminative model, Artificial neural network, Feature (linguistics), Computer vision, Image segmentation, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2022: 1, 2020: 1Per-year citation counts (last 5 years)
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2886435763 |
|---|---|
| doi | |
| ids.mag | 2886435763 |
| ids.openalex | https://openalex.org/W2886435763 |
| fwci | 0.14438254 |
| type | article |
| title | Deeply Self-Supervising Edge-to-Contour Neural Network Applied to Liver Segmentation. |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10052 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.960099995136261 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Medical Image Segmentation Techniques |
| topics[1].id | https://openalex.org/T14510 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9559000134468079 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Medical Imaging and Analysis |
| topics[2].id | https://openalex.org/T12422 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.951200008392334 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiomics and Machine Learning in Medical Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.8283678889274597 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7414930462837219 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6963627338409424 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6486904621124268 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6263880133628845 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C97931131 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6178116798400879 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[5].display_name | Discriminative model |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5797457098960876 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.491115540266037 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4582168459892273 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C124504099 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4348564147949219 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[9].display_name | Image segmentation |
| concepts[10].id | https://openalex.org/C41895202 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[10].display_name | Linguistics |
| concepts[11].id | https://openalex.org/C138885662 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[11].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.8283678889274597 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.7414930462837219 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6963627338409424 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.6486904621124268 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.6263880133628845 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/discriminative-model |
| keywords[5].score | 0.6178116798400879 |
| keywords[5].display_name | Discriminative model |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.5797457098960876 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/feature |
| keywords[7].score | 0.491115540266037 |
| keywords[7].display_name | Feature (linguistics) |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.4582168459892273 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/image-segmentation |
| keywords[9].score | 0.4348564147949219 |
| keywords[9].display_name | Image segmentation |
| language | en |
| locations[0].id | mag:2886435763 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | arXiv (Cornell University) |
| locations[0].landing_page_url | https://arxiv.org/abs/1808.00739v1 |
| authorships[0].author.id | https://openalex.org/A5039536609 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7503-3307 |
| authorships[0].author.display_name | Minyoung Chung |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Minyoung Chung |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5004985840 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9728-7631 |
| authorships[1].author.display_name | Jingyu Lee |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jingyu Lee |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101843055 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8248-9852 |
| authorships[2].author.display_name | Min-Kyung Lee |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Minkyung Lee |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101824064 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9676-271X |
| authorships[3].author.display_name | Jeongjin Lee |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jeongjin Lee |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101418877 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5602-9695 |
| authorships[4].author.display_name | Yeong-Gil Shin |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yeong-Gil Shin |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/abs/1808.00739v1 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deeply Self-Supervising Edge-to-Contour Neural Network Applied to Liver Segmentation. |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-10-10T17:16:08.811792 |
| primary_topic.id | https://openalex.org/T10052 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.960099995136261 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Medical Image Segmentation Techniques |
| related_works | https://openalex.org/W2437977774, https://openalex.org/W2914890787, https://openalex.org/W3161500668, https://openalex.org/W2782349608, https://openalex.org/W3033139251, https://openalex.org/W3127138334, https://openalex.org/W2997406136, https://openalex.org/W3201793090, https://openalex.org/W2922087284, https://openalex.org/W2951830443, https://openalex.org/W3083993216, https://openalex.org/W3125192636, https://openalex.org/W2965270294, https://openalex.org/W2524644797, https://openalex.org/W2737861363, https://openalex.org/W2116462678, https://openalex.org/W2550380503, https://openalex.org/W3157139923, https://openalex.org/W2555096873, https://openalex.org/W3158643392 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | mag:2886435763 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | arXiv (Cornell University) |
| best_oa_location.landing_page_url | https://arxiv.org/abs/1808.00739v1 |
| primary_location.id | mag:2886435763 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | arXiv (Cornell University) |
| primary_location.landing_page_url | https://arxiv.org/abs/1808.00739v1 |
| publication_date | 2018-08-02 |
| publication_year | 2018 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 22 |
| abstract_inverted_index.a | 2, 37, 43, 66, 132, 143, 150 |
| abstract_inverted_index.CT | 91 |
| abstract_inverted_index.In | 140 |
| abstract_inverted_index.To | 35 |
| abstract_inverted_index.an | 109 |
| abstract_inverted_index.as | 65 |
| abstract_inverted_index.by | 52 |
| abstract_inverted_index.in | 135 |
| abstract_inverted_index.is | 8 |
| abstract_inverted_index.of | 102, 173 |
| abstract_inverted_index.to | 28, 40, 58, 148 |
| abstract_inverted_index.160 | 89 |
| abstract_inverted_index.The | 72, 99, 112, 158 |
| abstract_inverted_index.and | 10, 76, 87, 97, 153 |
| abstract_inverted_index.can | 168 |
| abstract_inverted_index.for | 82, 95 |
| abstract_inverted_index.its | 11 |
| abstract_inverted_index.new | 144 |
| abstract_inverted_index.the | 30, 47, 54, 60, 69, 83, 103, 116, 120, 124, 129, 136, 164, 171, 174 |
| abstract_inverted_index.was | 13, 26, 49, 106, 146 |
| abstract_inverted_index.(CT) | 19 |
| abstract_inverted_index.deep | 77 |
| abstract_inverted_index.dice | 137 |
| abstract_inverted_index.more | 126 |
| abstract_inverted_index.than | 128 |
| abstract_inverted_index.that | 115, 163 |
| abstract_inverted_index.this | 141 |
| abstract_inverted_index.used | 94 |
| abstract_inverted_index.uses | 119 |
| abstract_inverted_index.were | 79, 93 |
| abstract_inverted_index.with | 68, 131 |
| abstract_inverted_index.2.13% | 133 |
| abstract_inverted_index.acted | 64 |
| abstract_inverted_index.fully | 23 |
| abstract_inverted_index.guide | 36, 149 |
| abstract_inverted_index.image | 32 |
| abstract_inverted_index.learn | 154 |
| abstract_inverted_index.liver | 5, 45, 125 |
| abstract_inverted_index.task. | 176 |
| abstract_inverted_index.using | 15 |
| abstract_inverted_index.which | 63, 118 |
| abstract_inverted_index.deeply | 50 |
| abstract_inverted_index.derive | 59 |
| abstract_inverted_index.global | 70 |
| abstract_inverted_index.guided | 165 |
| abstract_inverted_index.images | 92 |
| abstract_inverted_index.merged | 81 |
| abstract_inverted_index.neural | 3, 38, 151, 160 |
| abstract_inverted_index.result | 113 |
| abstract_inverted_index.scheme | 57 |
| abstract_inverted_index.score. | 138 |
| abstract_inverted_index.shape, | 75 |
| abstract_inverted_index.shape. | 71 |
| abstract_inverted_index.showed | 114 |
| abstract_inverted_index.study, | 142 |
| abstract_inverted_index.target | 44 |
| abstract_inverted_index.Herein, | 1 |
| abstract_inverted_index.Results | 86 |
| abstract_inverted_index.contour | 121, 156, 166 |
| abstract_inverted_index.images. | 20 |
| abstract_inverted_index.improve | 170 |
| abstract_inverted_index.method, | 117 |
| abstract_inverted_index.network | 25, 39, 48, 105, 152, 161 |
| abstract_inverted_index.object, | 46 |
| abstract_inverted_index.through | 108 |
| abstract_inverted_index.Methods: | 21 |
| abstract_inverted_index.adaptive | 55 |
| abstract_inverted_index.applying | 53 |
| abstract_inverted_index.computed | 17 |
| abstract_inverted_index.contour, | 62, 74 |
| abstract_inverted_index.feature, | 122 |
| abstract_inverted_index.features | 78, 167 |
| abstract_inverted_index.overcome | 29 |
| abstract_inverted_index.problem. | 34 |
| abstract_inverted_index.proposed | 104, 159 |
| abstract_inverted_index.results. | 85 |
| abstract_inverted_index.training | 96 |
| abstract_inverted_index.abdominal | 16, 90 |
| abstract_inverted_index.algorithm | 7 |
| abstract_inverted_index.delineate | 42 |
| abstract_inverted_index.developed | 27 |
| abstract_inverted_index.essential | 61 |
| abstract_inverted_index.evaluated | 14 |
| abstract_inverted_index.features. | 157 |
| abstract_inverted_index.framework | 145 |
| abstract_inverted_index.performed | 107 |
| abstract_inverted_index.proposed, | 9 |
| abstract_inverted_index.segmented | 123 |
| abstract_inverted_index.Objective: | 0 |
| abstract_inverted_index.accurately | 41, 127 |
| abstract_inverted_index.complement | 67 |
| abstract_inverted_index.eight-fold | 110 |
| abstract_inverted_index.evaluation | 101 |
| abstract_inverted_index.internally | 80 |
| abstract_inverted_index.introduced | 147 |
| abstract_inverted_index.supervised | 51 |
| abstract_inverted_index.tomography | 18 |
| abstract_inverted_index.volumetric | 31 |
| abstract_inverted_index.Conclusion: | 88 |
| abstract_inverted_index.improvement | 134 |
| abstract_inverted_index.performance | 12, 172 |
| abstract_inverted_index.validation. | 98 |
| abstract_inverted_index.demonstrates | 162 |
| abstract_inverted_index.quantitative | 100 |
| abstract_inverted_index.segmentation | 6, 33, 84, 175 |
| abstract_inverted_index.Significance: | 139 |
| abstract_inverted_index.complementary | 155 |
| abstract_inverted_index.convolutional | 24 |
| abstract_inverted_index.network-based | 4 |
| abstract_inverted_index.significantly | 169 |
| abstract_inverted_index.discriminative | 73 |
| abstract_inverted_index.self-supervision | 56 |
| abstract_inverted_index.state-of-the-art | 130 |
| abstract_inverted_index.cross-validation. | 111 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.44867102 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |