DEERE: Document-Level Event Extraction as Relation Extraction Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1155/2022/2742796
The descriptions of complex events usually span sentences, so we need to extract complete event information from the whole document. To address the challenges of document-level event extraction, we propose a novel framework named Document-level Event Extraction as Relation Extraction (DEERE), which is suitable for document-level event extraction tasks without trigger-word labelling. By well-designed task transformation, DEERE remodels event extraction as single-stage relation extraction, which can mitigate error propagation. A long text supported encoder is adopted in the relation extraction model to aware the global context effectively. A fault-tolerant event integration algorithm is designed to improve the prediction accuracy. Experimental results show that our approach advances the SOTA for the ChFinAnn dataset by an average F1-score of 3.7. The code and data are available at https://github.com/maomaotfntfn/DEERE.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2022/2742796
- https://downloads.hindawi.com/journals/misy/2022/2742796.pdf
- OA Status
- hybrid
- Cited By
- 4
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4293468105
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4293468105Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2022/2742796Digital Object Identifier
- Title
-
DEERE: Document-Level Event Extraction as Relation ExtractionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-26Full publication date if available
- Authors
-
Jian Li, Ruijuan Hu, Keliang Zhang, Haiyan Liu, Yanzhou MaList of authors in order
- Landing page
-
https://doi.org/10.1155/2022/2742796Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/misy/2022/2742796.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/misy/2022/2742796.pdfDirect OA link when available
- Concepts
-
Computer science, Event (particle physics), Relationship extraction, Context (archaeology), Relation (database), Task (project management), Transformation (genetics), Extraction (chemistry), Information extraction, Natural language processing, Data mining, Encoder, Artificial intelligence, Code (set theory), Word (group theory), Information retrieval, Programming language, Linguistics, Paleontology, Operating system, Quantum mechanics, Biology, Chromatography, Gene, Set (abstract data type), Management, Physics, Chemistry, Biochemistry, Economics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4293468105 |
|---|---|
| doi | https://doi.org/10.1155/2022/2742796 |
| ids.doi | https://doi.org/10.1155/2022/2742796 |
| ids.openalex | https://openalex.org/W4293468105 |
| fwci | 0.78319528 |
| type | article |
| title | DEERE: Document-Level Event Extraction as Relation Extraction |
| biblio.issue | |
| biblio.volume | 2022 |
| biblio.last_page | 8 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T13083 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9962000250816345 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Text Analysis Techniques |
| is_xpac | False |
| apc_list.value | 2100 |
| apc_list.currency | USD |
| apc_list.value_usd | 2100 |
| apc_paid.value | 2100 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2100 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8799010515213013 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779662365 |
| concepts[1].level | 2 |
| concepts[1].score | 0.719192385673523 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5416694 |
| concepts[1].display_name | Event (particle physics) |
| concepts[2].id | https://openalex.org/C153604712 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6629664897918701 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7310755 |
| concepts[2].display_name | Relationship extraction |
| concepts[3].id | https://openalex.org/C2779343474 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6039979457855225 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[3].display_name | Context (archaeology) |
| concepts[4].id | https://openalex.org/C25343380 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5767810344696045 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q277521 |
| concepts[4].display_name | Relation (database) |
| concepts[5].id | https://openalex.org/C2780451532 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5411583185195923 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[5].display_name | Task (project management) |
| concepts[6].id | https://openalex.org/C204241405 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5398435592651367 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q461499 |
| concepts[6].display_name | Transformation (genetics) |
| concepts[7].id | https://openalex.org/C4725764 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5336580872535706 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844704 |
| concepts[7].display_name | Extraction (chemistry) |
| concepts[8].id | https://openalex.org/C195807954 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4881070554256439 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1662562 |
| concepts[8].display_name | Information extraction |
| concepts[9].id | https://openalex.org/C204321447 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4839361310005188 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[9].display_name | Natural language processing |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.46703100204467773 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C118505674 |
| concepts[11].level | 2 |
| concepts[11].score | 0.45857861638069153 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[11].display_name | Encoder |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.4463408291339874 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C2776760102 |
| concepts[13].level | 3 |
| concepts[13].score | 0.4318651854991913 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[13].display_name | Code (set theory) |
| concepts[14].id | https://openalex.org/C90805587 |
| concepts[14].level | 2 |
| concepts[14].score | 0.4184984564781189 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q10944557 |
| concepts[14].display_name | Word (group theory) |
| concepts[15].id | https://openalex.org/C23123220 |
| concepts[15].level | 1 |
| concepts[15].score | 0.4079710841178894 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[15].display_name | Information retrieval |
| concepts[16].id | https://openalex.org/C199360897 |
| concepts[16].level | 1 |
| concepts[16].score | 0.06757929921150208 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[16].display_name | Programming language |
| concepts[17].id | https://openalex.org/C41895202 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[17].display_name | Linguistics |
| concepts[18].id | https://openalex.org/C151730666 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[18].display_name | Paleontology |
| concepts[19].id | https://openalex.org/C111919701 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[19].display_name | Operating system |
| concepts[20].id | https://openalex.org/C62520636 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[20].display_name | Quantum mechanics |
| concepts[21].id | https://openalex.org/C86803240 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[21].display_name | Biology |
| concepts[22].id | https://openalex.org/C43617362 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[22].display_name | Chromatography |
| concepts[23].id | https://openalex.org/C104317684 |
| concepts[23].level | 2 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[23].display_name | Gene |
| concepts[24].id | https://openalex.org/C177264268 |
| concepts[24].level | 2 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[24].display_name | Set (abstract data type) |
| concepts[25].id | https://openalex.org/C187736073 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[25].display_name | Management |
| concepts[26].id | https://openalex.org/C121332964 |
| concepts[26].level | 0 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[26].display_name | Physics |
| concepts[27].id | https://openalex.org/C185592680 |
| concepts[27].level | 0 |
| concepts[27].score | 0.0 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[27].display_name | Chemistry |
| concepts[28].id | https://openalex.org/C55493867 |
| concepts[28].level | 1 |
| concepts[28].score | 0.0 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[28].display_name | Biochemistry |
| concepts[29].id | https://openalex.org/C162324750 |
| concepts[29].level | 0 |
| concepts[29].score | 0.0 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[29].display_name | Economics |
| concepts[30].id | https://openalex.org/C138885662 |
| concepts[30].level | 0 |
| concepts[30].score | 0.0 |
| concepts[30].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[30].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8799010515213013 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/event |
| keywords[1].score | 0.719192385673523 |
| keywords[1].display_name | Event (particle physics) |
| keywords[2].id | https://openalex.org/keywords/relationship-extraction |
| keywords[2].score | 0.6629664897918701 |
| keywords[2].display_name | Relationship extraction |
| keywords[3].id | https://openalex.org/keywords/context |
| keywords[3].score | 0.6039979457855225 |
| keywords[3].display_name | Context (archaeology) |
| keywords[4].id | https://openalex.org/keywords/relation |
| keywords[4].score | 0.5767810344696045 |
| keywords[4].display_name | Relation (database) |
| keywords[5].id | https://openalex.org/keywords/task |
| keywords[5].score | 0.5411583185195923 |
| keywords[5].display_name | Task (project management) |
| keywords[6].id | https://openalex.org/keywords/transformation |
| keywords[6].score | 0.5398435592651367 |
| keywords[6].display_name | Transformation (genetics) |
| keywords[7].id | https://openalex.org/keywords/extraction |
| keywords[7].score | 0.5336580872535706 |
| keywords[7].display_name | Extraction (chemistry) |
| keywords[8].id | https://openalex.org/keywords/information-extraction |
| keywords[8].score | 0.4881070554256439 |
| keywords[8].display_name | Information extraction |
| keywords[9].id | https://openalex.org/keywords/natural-language-processing |
| keywords[9].score | 0.4839361310005188 |
| keywords[9].display_name | Natural language processing |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.46703100204467773 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/encoder |
| keywords[11].score | 0.45857861638069153 |
| keywords[11].display_name | Encoder |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.4463408291339874 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/code |
| keywords[13].score | 0.4318651854991913 |
| keywords[13].display_name | Code (set theory) |
| keywords[14].id | https://openalex.org/keywords/word |
| keywords[14].score | 0.4184984564781189 |
| keywords[14].display_name | Word (group theory) |
| keywords[15].id | https://openalex.org/keywords/information-retrieval |
| keywords[15].score | 0.4079710841178894 |
| keywords[15].display_name | Information retrieval |
| keywords[16].id | https://openalex.org/keywords/programming-language |
| keywords[16].score | 0.06757929921150208 |
| keywords[16].display_name | Programming language |
| language | en |
| locations[0].id | doi:10.1155/2022/2742796 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S152111507 |
| locations[0].source.issn | 1574-017X, 1875-905X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1574-017X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Mobile Information Systems |
| locations[0].source.host_organization | https://openalex.org/P4310318577 |
| locations[0].source.host_organization_name | IOS Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310318577 |
| locations[0].source.host_organization_lineage_names | IOS Press |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/misy/2022/2742796.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Mobile Information Systems |
| locations[0].landing_page_url | https://doi.org/10.1155/2022/2742796 |
| locations[1].id | pmh:oai:doaj.org/article:ac3b2b31cd05492ca5984e9e01203cc8 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Mobile Information Systems, Vol 2022 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/ac3b2b31cd05492ca5984e9e01203cc8 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5015481159 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9473-2143 |
| authorships[0].author.display_name | Jian Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I169689159 |
| authorships[0].affiliations[0].raw_affiliation_string | PLA Strategic Support Force Information Engineering University, Luoyang 471003, China |
| authorships[0].institutions[0].id | https://openalex.org/I169689159 |
| authorships[0].institutions[0].ror | https://ror.org/00mm1qk40 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I169689159 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | PLA Information Engineering University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jian Li |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | PLA Strategic Support Force Information Engineering University, Luoyang 471003, China |
| authorships[1].author.id | https://openalex.org/A5056377542 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6973-9829 |
| authorships[1].author.display_name | Ruijuan Hu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I169689159 |
| authorships[1].affiliations[0].raw_affiliation_string | PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China |
| authorships[1].institutions[0].id | https://openalex.org/I169689159 |
| authorships[1].institutions[0].ror | https://ror.org/00mm1qk40 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I169689159 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | PLA Information Engineering University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ruijuan Hu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China |
| authorships[2].author.id | https://openalex.org/A5057791835 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6791-7399 |
| authorships[2].author.display_name | Keliang Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I169689159 |
| authorships[2].affiliations[0].raw_affiliation_string | PLA Strategic Support Force Information Engineering University, Luoyang 471003, China |
| authorships[2].institutions[0].id | https://openalex.org/I169689159 |
| authorships[2].institutions[0].ror | https://ror.org/00mm1qk40 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I169689159 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | PLA Information Engineering University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Keliang Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | PLA Strategic Support Force Information Engineering University, Luoyang 471003, China |
| authorships[3].author.id | https://openalex.org/A5100378956 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3442-1722 |
| authorships[3].author.display_name | Haiyan Liu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I169689159 |
| authorships[3].affiliations[0].raw_affiliation_string | PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China |
| authorships[3].institutions[0].id | https://openalex.org/I169689159 |
| authorships[3].institutions[0].ror | https://ror.org/00mm1qk40 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I169689159 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | PLA Information Engineering University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Haiyan Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China |
| authorships[4].author.id | https://openalex.org/A5030803443 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yanzhou Ma |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I169689159 |
| authorships[4].affiliations[0].raw_affiliation_string | PLA Strategic Support Force Information Engineering University, Luoyang 471003, China |
| authorships[4].institutions[0].id | https://openalex.org/I169689159 |
| authorships[4].institutions[0].ror | https://ror.org/00mm1qk40 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I169689159 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | PLA Information Engineering University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yanzhou Ma |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | PLA Strategic Support Force Information Engineering University, Luoyang 471003, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/misy/2022/2742796.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | DEERE: Document-Level Event Extraction as Relation Extraction |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W4319940250, https://openalex.org/W2352298027, https://openalex.org/W842810586, https://openalex.org/W2092919065, https://openalex.org/W4236762297, https://openalex.org/W3138801416, https://openalex.org/W2369351710, https://openalex.org/W2594363579, https://openalex.org/W2169232658, https://openalex.org/W2444550338 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1155/2022/2742796 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S152111507 |
| best_oa_location.source.issn | 1574-017X, 1875-905X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1574-017X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Mobile Information Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310318577 |
| best_oa_location.source.host_organization_name | IOS Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310318577 |
| best_oa_location.source.host_organization_lineage_names | IOS Press |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/misy/2022/2742796.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Mobile Information Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2022/2742796 |
| primary_location.id | doi:10.1155/2022/2742796 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S152111507 |
| primary_location.source.issn | 1574-017X, 1875-905X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1574-017X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Mobile Information Systems |
| primary_location.source.host_organization | https://openalex.org/P4310318577 |
| primary_location.source.host_organization_name | IOS Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310318577 |
| primary_location.source.host_organization_lineage_names | IOS Press |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/misy/2022/2742796.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Mobile Information Systems |
| primary_location.landing_page_url | https://doi.org/10.1155/2022/2742796 |
| publication_date | 2022-08-26 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2290466703, https://openalex.org/W3177448563, https://openalex.org/W3020923281, https://openalex.org/W3093565159, https://openalex.org/W2896457183, https://openalex.org/W3155806510, https://openalex.org/W2803884531, https://openalex.org/W2971871542, https://openalex.org/W2165962657, https://openalex.org/W2250575108, https://openalex.org/W2250999640, https://openalex.org/W2508618307, https://openalex.org/W2475245295, https://openalex.org/W6755185849, https://openalex.org/W2952437275, https://openalex.org/W2972140869, https://openalex.org/W2134486566, https://openalex.org/W2118161437, https://openalex.org/W2250671371, https://openalex.org/W3172768590, https://openalex.org/W3024298906, https://openalex.org/W3163048495, https://openalex.org/W2992720691, https://openalex.org/W3129155849, https://openalex.org/W3154063293, https://openalex.org/W3034617555, https://openalex.org/W3106177076, https://openalex.org/W4388979610, https://openalex.org/W2885765547, https://openalex.org/W2950589543, https://openalex.org/W3116427155, https://openalex.org/W3174130957, https://openalex.org/W4288112774, https://openalex.org/W3174945605 |
| referenced_works_count | 34 |
| abstract_inverted_index.A | 69, 87 |
| abstract_inverted_index.a | 30 |
| abstract_inverted_index.By | 52 |
| abstract_inverted_index.To | 20 |
| abstract_inverted_index.an | 113 |
| abstract_inverted_index.as | 37, 60 |
| abstract_inverted_index.at | 124 |
| abstract_inverted_index.by | 112 |
| abstract_inverted_index.in | 76 |
| abstract_inverted_index.is | 42, 74, 92 |
| abstract_inverted_index.of | 2, 24, 116 |
| abstract_inverted_index.so | 8 |
| abstract_inverted_index.to | 11, 81, 94 |
| abstract_inverted_index.we | 9, 28 |
| abstract_inverted_index.The | 0, 118 |
| abstract_inverted_index.and | 120 |
| abstract_inverted_index.are | 122 |
| abstract_inverted_index.can | 65 |
| abstract_inverted_index.for | 44, 108 |
| abstract_inverted_index.our | 103 |
| abstract_inverted_index.the | 17, 22, 77, 83, 96, 106, 109 |
| abstract_inverted_index.3.7. | 117 |
| abstract_inverted_index.SOTA | 107 |
| abstract_inverted_index.code | 119 |
| abstract_inverted_index.data | 121 |
| abstract_inverted_index.from | 16 |
| abstract_inverted_index.long | 70 |
| abstract_inverted_index.need | 10 |
| abstract_inverted_index.show | 101 |
| abstract_inverted_index.span | 6 |
| abstract_inverted_index.task | 54 |
| abstract_inverted_index.text | 71 |
| abstract_inverted_index.that | 102 |
| abstract_inverted_index.DEERE | 56 |
| abstract_inverted_index.Event | 35 |
| abstract_inverted_index.aware | 82 |
| abstract_inverted_index.error | 67 |
| abstract_inverted_index.event | 14, 26, 46, 58, 89 |
| abstract_inverted_index.model | 80 |
| abstract_inverted_index.named | 33 |
| abstract_inverted_index.novel | 31 |
| abstract_inverted_index.tasks | 48 |
| abstract_inverted_index.which | 41, 64 |
| abstract_inverted_index.whole | 18 |
| abstract_inverted_index.events | 4 |
| abstract_inverted_index.global | 84 |
| abstract_inverted_index.address | 21 |
| abstract_inverted_index.adopted | 75 |
| abstract_inverted_index.average | 114 |
| abstract_inverted_index.complex | 3 |
| abstract_inverted_index.context | 85 |
| abstract_inverted_index.dataset | 111 |
| abstract_inverted_index.encoder | 73 |
| abstract_inverted_index.extract | 12 |
| abstract_inverted_index.improve | 95 |
| abstract_inverted_index.propose | 29 |
| abstract_inverted_index.results | 100 |
| abstract_inverted_index.usually | 5 |
| abstract_inverted_index.without | 49 |
| abstract_inverted_index.(DEERE), | 40 |
| abstract_inverted_index.ChFinAnn | 110 |
| abstract_inverted_index.F1-score | 115 |
| abstract_inverted_index.Relation | 38 |
| abstract_inverted_index.advances | 105 |
| abstract_inverted_index.approach | 104 |
| abstract_inverted_index.complete | 13 |
| abstract_inverted_index.designed | 93 |
| abstract_inverted_index.mitigate | 66 |
| abstract_inverted_index.relation | 62, 78 |
| abstract_inverted_index.remodels | 57 |
| abstract_inverted_index.suitable | 43 |
| abstract_inverted_index.accuracy. | 98 |
| abstract_inverted_index.algorithm | 91 |
| abstract_inverted_index.available | 123 |
| abstract_inverted_index.document. | 19 |
| abstract_inverted_index.framework | 32 |
| abstract_inverted_index.supported | 72 |
| abstract_inverted_index.Extraction | 36, 39 |
| abstract_inverted_index.challenges | 23 |
| abstract_inverted_index.extraction | 47, 59, 79 |
| abstract_inverted_index.labelling. | 51 |
| abstract_inverted_index.prediction | 97 |
| abstract_inverted_index.sentences, | 7 |
| abstract_inverted_index.extraction, | 27, 63 |
| abstract_inverted_index.information | 15 |
| abstract_inverted_index.integration | 90 |
| abstract_inverted_index.Experimental | 99 |
| abstract_inverted_index.descriptions | 1 |
| abstract_inverted_index.effectively. | 86 |
| abstract_inverted_index.propagation. | 68 |
| abstract_inverted_index.single-stage | 61 |
| abstract_inverted_index.trigger-word | 50 |
| abstract_inverted_index.well-designed | 53 |
| abstract_inverted_index.Document-level | 34 |
| abstract_inverted_index.document-level | 25, 45 |
| abstract_inverted_index.fault-tolerant | 88 |
| abstract_inverted_index.transformation, | 55 |
| abstract_inverted_index.https://github.com/maomaotfntfn/DEERE. | 125 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5015481159 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I169689159 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.5400000214576721 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.72383342 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |