Defect segmentation: Mapping tunnel lining internal defects with ground penetrating radar data using a convolutional neural network Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2003.13120
This research proposes a Ground Penetrating Radar (GPR) data processing method for non-destructive detection of tunnel lining internal defects, called defect segmentation. To perform this critical step of automatic tunnel lining detection, the method uses a CNN called Segnet combined with the Lovász softmax loss function to map the internal defect structure with GPR synthetic data, which improves the accuracy, automation and efficiency of defects detection. The novel method we present overcomes several difficulties of traditional GPR data interpretation as demonstrated by an evaluation on both synthetic and real datas -- to verify the method on real data, a test model containing a known defect was designed and built and GPR data was obtained and analyzed.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2003.13120
- https://arxiv.org/pdf/2003.13120
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4298131168
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4298131168Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2003.13120Digital Object Identifier
- Title
-
Defect segmentation: Mapping tunnel lining internal defects with ground penetrating radar data using a convolutional neural networkWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-03-29Full publication date if available
- Authors
-
Senlin Yang, Zhengfang Wang, Jing Wang, Anthony G. Cohn, Jiaqi Zhang, Peng Jiang, Peng Jiang, Qingmei SuiList of authors in order
- Landing page
-
https://arxiv.org/abs/2003.13120Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2003.13120Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2003.13120Direct OA link when available
- Concepts
-
Ground-penetrating radar, Softmax function, Convolutional neural network, Segmentation, Computer science, Artificial intelligence, Automation, Radar, Artificial neural network, Pattern recognition (psychology), Remote sensing, Geology, Engineering, Mechanical engineering, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4298131168 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2003.13120 |
| ids.doi | https://doi.org/10.48550/arxiv.2003.13120 |
| ids.openalex | https://openalex.org/W4298131168 |
| fwci | |
| type | preprint |
| title | Defect segmentation: Mapping tunnel lining internal defects with ground penetrating radar data using a convolutional neural network |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11609 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2212 |
| topics[0].subfield.display_name | Ocean Engineering |
| topics[0].display_name | Geophysical Methods and Applications |
| topics[1].id | https://openalex.org/T12482 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9898999929428101 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Tunneling and Rock Mechanics |
| topics[2].id | https://openalex.org/T11606 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9890000224113464 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Infrastructure Maintenance and Monitoring |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C71813955 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9633426070213318 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q503560 |
| concepts[0].display_name | Ground-penetrating radar |
| concepts[1].id | https://openalex.org/C188441871 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8671867251396179 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7554146 |
| concepts[1].display_name | Softmax function |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6775519251823425 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C89600930 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6167117953300476 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[3].display_name | Segmentation |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6109821796417236 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5589467883110046 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C115901376 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5251837968826294 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q184199 |
| concepts[6].display_name | Automation |
| concepts[7].id | https://openalex.org/C554190296 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5032395720481873 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[7].display_name | Radar |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4247095286846161 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.39437976479530334 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C62649853 |
| concepts[10].level | 1 |
| concepts[10].score | 0.34628090262413025 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[10].display_name | Remote sensing |
| concepts[11].id | https://openalex.org/C127313418 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2740602493286133 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[11].display_name | Geology |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.25019484758377075 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C78519656 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[13].display_name | Mechanical engineering |
| concepts[14].id | https://openalex.org/C76155785 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[14].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/ground-penetrating-radar |
| keywords[0].score | 0.9633426070213318 |
| keywords[0].display_name | Ground-penetrating radar |
| keywords[1].id | https://openalex.org/keywords/softmax-function |
| keywords[1].score | 0.8671867251396179 |
| keywords[1].display_name | Softmax function |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.6775519251823425 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/segmentation |
| keywords[3].score | 0.6167117953300476 |
| keywords[3].display_name | Segmentation |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.6109821796417236 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5589467883110046 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/automation |
| keywords[6].score | 0.5251837968826294 |
| keywords[6].display_name | Automation |
| keywords[7].id | https://openalex.org/keywords/radar |
| keywords[7].score | 0.5032395720481873 |
| keywords[7].display_name | Radar |
| keywords[8].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[8].score | 0.4247095286846161 |
| keywords[8].display_name | Artificial neural network |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.39437976479530334 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/remote-sensing |
| keywords[10].score | 0.34628090262413025 |
| keywords[10].display_name | Remote sensing |
| keywords[11].id | https://openalex.org/keywords/geology |
| keywords[11].score | 0.2740602493286133 |
| keywords[11].display_name | Geology |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.25019484758377075 |
| keywords[12].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2003.13120 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2003.13120 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2003.13120 |
| locations[1].id | doi:10.48550/arxiv.2003.13120 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2003.13120 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100531058 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Senlin Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang, Senlin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101774827 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2675-329X |
| authorships[1].author.display_name | Zhengfang Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Zhengfang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100633558 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0402-5593 |
| authorships[2].author.display_name | Jing Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Jing |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5024409281 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7652-8907 |
| authorships[3].author.display_name | Anthony G. Cohn |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Cohn, Anthony G. |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100349818 |
| authorships[4].author.orcid | https://orcid.org/0009-0008-6315-2331 |
| authorships[4].author.display_name | Jiaqi Zhang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhang, Jiaqi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100722002 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8349-1743 |
| authorships[5].author.display_name | Peng Jiang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jiang, Peng |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100722002 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8349-1743 |
| authorships[6].author.display_name | Peng Jiang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jiang, Peng |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5102020324 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-7045-3967 |
| authorships[7].author.display_name | Qingmei Sui |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Sui, Qingmei |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2003.13120 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Defect segmentation: Mapping tunnel lining internal defects with ground penetrating radar data using a convolutional neural network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11609 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2212 |
| primary_topic.subfield.display_name | Ocean Engineering |
| primary_topic.display_name | Geophysical Methods and Applications |
| related_works | https://openalex.org/W3107204728, https://openalex.org/W4287591324, https://openalex.org/W3108503355, https://openalex.org/W2980176872, https://openalex.org/W4226420367, https://openalex.org/W2962876041, https://openalex.org/W3090555870, https://openalex.org/W3022820045, https://openalex.org/W3005627584, https://openalex.org/W2899027234 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2003.13120 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2003.13120 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2003.13120 |
| primary_location.id | pmh:oai:arXiv.org:2003.13120 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2003.13120 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2003.13120 |
| publication_date | 2020-03-29 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 35, 98, 102 |
| abstract_inverted_index.-- | 90 |
| abstract_inverted_index.To | 22 |
| abstract_inverted_index.an | 82 |
| abstract_inverted_index.as | 79 |
| abstract_inverted_index.by | 81 |
| abstract_inverted_index.of | 14, 27, 63, 74 |
| abstract_inverted_index.on | 84, 95 |
| abstract_inverted_index.to | 46, 91 |
| abstract_inverted_index.we | 69 |
| abstract_inverted_index.CNN | 36 |
| abstract_inverted_index.GPR | 53, 76, 110 |
| abstract_inverted_index.The | 66 |
| abstract_inverted_index.and | 61, 87, 107, 109, 114 |
| abstract_inverted_index.for | 11 |
| abstract_inverted_index.map | 47 |
| abstract_inverted_index.the | 32, 41, 48, 58, 93 |
| abstract_inverted_index.was | 105, 112 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.both | 85 |
| abstract_inverted_index.data | 8, 77, 111 |
| abstract_inverted_index.loss | 44 |
| abstract_inverted_index.real | 88, 96 |
| abstract_inverted_index.step | 26 |
| abstract_inverted_index.test | 99 |
| abstract_inverted_index.this | 24 |
| abstract_inverted_index.uses | 34 |
| abstract_inverted_index.with | 40, 52 |
| abstract_inverted_index.(GPR) | 7 |
| abstract_inverted_index.Radar | 6 |
| abstract_inverted_index.built | 108 |
| abstract_inverted_index.data, | 55, 97 |
| abstract_inverted_index.datas | 89 |
| abstract_inverted_index.known | 103 |
| abstract_inverted_index.model | 100 |
| abstract_inverted_index.novel | 67 |
| abstract_inverted_index.which | 56 |
| abstract_inverted_index.Ground | 4 |
| abstract_inverted_index.Segnet | 38 |
| abstract_inverted_index.called | 19, 37 |
| abstract_inverted_index.defect | 20, 50, 104 |
| abstract_inverted_index.lining | 16, 30 |
| abstract_inverted_index.method | 10, 33, 68, 94 |
| abstract_inverted_index.tunnel | 15, 29 |
| abstract_inverted_index.verify | 92 |
| abstract_inverted_index.Lovász | 42 |
| abstract_inverted_index.defects | 64 |
| abstract_inverted_index.perform | 23 |
| abstract_inverted_index.present | 70 |
| abstract_inverted_index.several | 72 |
| abstract_inverted_index.softmax | 43 |
| abstract_inverted_index.combined | 39 |
| abstract_inverted_index.critical | 25 |
| abstract_inverted_index.defects, | 18 |
| abstract_inverted_index.designed | 106 |
| abstract_inverted_index.function | 45 |
| abstract_inverted_index.improves | 57 |
| abstract_inverted_index.internal | 17, 49 |
| abstract_inverted_index.obtained | 113 |
| abstract_inverted_index.proposes | 2 |
| abstract_inverted_index.research | 1 |
| abstract_inverted_index.accuracy, | 59 |
| abstract_inverted_index.analyzed. | 115 |
| abstract_inverted_index.automatic | 28 |
| abstract_inverted_index.detection | 13 |
| abstract_inverted_index.overcomes | 71 |
| abstract_inverted_index.structure | 51 |
| abstract_inverted_index.synthetic | 54, 86 |
| abstract_inverted_index.automation | 60 |
| abstract_inverted_index.containing | 101 |
| abstract_inverted_index.detection, | 31 |
| abstract_inverted_index.detection. | 65 |
| abstract_inverted_index.efficiency | 62 |
| abstract_inverted_index.evaluation | 83 |
| abstract_inverted_index.processing | 9 |
| abstract_inverted_index.Penetrating | 5 |
| abstract_inverted_index.traditional | 75 |
| abstract_inverted_index.demonstrated | 80 |
| abstract_inverted_index.difficulties | 73 |
| abstract_inverted_index.segmentation. | 21 |
| abstract_inverted_index.interpretation | 78 |
| abstract_inverted_index.non-destructive | 12 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |