Defect Transfer GAN: Diverse Defect Synthesis for Data Augmentation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2302.08366
Data-hunger and data-imbalance are two major pitfalls in many deep learning approaches. For example, on highly optimized production lines, defective samples are hardly acquired while non-defective samples come almost for free. The defects however often seem to resemble each other, e.g., scratches on different products may only differ in a few characteristics. In this work, we introduce a framework, Defect Transfer GAN (DT-GAN), which learns to represent defect types independent of and across various background products and yet can apply defect-specific styles to generate realistic defective images. An empirical study on the MVTec AD and two additional datasets showcase DT-GAN outperforms state-of-the-art image synthesis methods w.r.t. sample fidelity and diversity in defect generation. We further demonstrate benefits for a critical downstream task in manufacturing -- defect classification. Results show that the augmented data from DT-GAN provides consistent gains even in the few samples regime and reduces the error rate up to 51% compared to both traditional and advanced data augmentation methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2302.08366
- https://arxiv.org/pdf/2302.08366
- OA Status
- green
- Cited By
- 7
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4321277116
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4321277116Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2302.08366Digital Object Identifier
- Title
-
Defect Transfer GAN: Diverse Defect Synthesis for Data AugmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-16Full publication date if available
- Authors
-
Ruyu Wang, Sabrina Hoppe, Eduardo Monari, Marco F. HuberList of authors in order
- Landing page
-
https://arxiv.org/abs/2302.08366Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2302.08366Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2302.08366Direct OA link when available
- Concepts
-
Computer science, Task (project management), High fidelity, Fidelity, Transfer (computing), Artificial intelligence, Pattern recognition (psychology), Biological system, Materials science, Parallel computing, Biology, Physics, Telecommunications, Economics, Acoustics, ManagementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1, 2023: 4Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4321277116 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2302.08366 |
| ids.doi | https://doi.org/10.48550/arxiv.2302.08366 |
| ids.openalex | https://openalex.org/W4321277116 |
| fwci | |
| type | preprint |
| title | Defect Transfer GAN: Diverse Defect Synthesis for Data Augmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9934999942779541 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T11338 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9830999970436096 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advancements in Photolithography Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6244120597839355 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2780451532 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5965947508811951 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[1].display_name | Task (project management) |
| concepts[2].id | https://openalex.org/C113364801 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5755171775817871 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q26674 |
| concepts[2].display_name | High fidelity |
| concepts[3].id | https://openalex.org/C2776459999 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5032922625541687 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2119376 |
| concepts[3].display_name | Fidelity |
| concepts[4].id | https://openalex.org/C2776175482 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4627184271812439 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1195816 |
| concepts[4].display_name | Transfer (computing) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.41988256573677063 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.39460325241088867 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C186060115 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3451296091079712 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q30336093 |
| concepts[7].display_name | Biological system |
| concepts[8].id | https://openalex.org/C192562407 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3450987935066223 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[8].display_name | Materials science |
| concepts[9].id | https://openalex.org/C173608175 |
| concepts[9].level | 1 |
| concepts[9].score | 0.192284494638443 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[9].display_name | Parallel computing |
| concepts[10].id | https://openalex.org/C86803240 |
| concepts[10].level | 0 |
| concepts[10].score | 0.1736389398574829 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[10].display_name | Biology |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.12436622381210327 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C76155785 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[12].display_name | Telecommunications |
| concepts[13].id | https://openalex.org/C162324750 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[13].display_name | Economics |
| concepts[14].id | https://openalex.org/C24890656 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[14].display_name | Acoustics |
| concepts[15].id | https://openalex.org/C187736073 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[15].display_name | Management |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6244120597839355 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/task |
| keywords[1].score | 0.5965947508811951 |
| keywords[1].display_name | Task (project management) |
| keywords[2].id | https://openalex.org/keywords/high-fidelity |
| keywords[2].score | 0.5755171775817871 |
| keywords[2].display_name | High fidelity |
| keywords[3].id | https://openalex.org/keywords/fidelity |
| keywords[3].score | 0.5032922625541687 |
| keywords[3].display_name | Fidelity |
| keywords[4].id | https://openalex.org/keywords/transfer |
| keywords[4].score | 0.4627184271812439 |
| keywords[4].display_name | Transfer (computing) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.41988256573677063 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.39460325241088867 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/biological-system |
| keywords[7].score | 0.3451296091079712 |
| keywords[7].display_name | Biological system |
| keywords[8].id | https://openalex.org/keywords/materials-science |
| keywords[8].score | 0.3450987935066223 |
| keywords[8].display_name | Materials science |
| keywords[9].id | https://openalex.org/keywords/parallel-computing |
| keywords[9].score | 0.192284494638443 |
| keywords[9].display_name | Parallel computing |
| keywords[10].id | https://openalex.org/keywords/biology |
| keywords[10].score | 0.1736389398574829 |
| keywords[10].display_name | Biology |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.12436622381210327 |
| keywords[11].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2302.08366 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2302.08366 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2302.08366 |
| locations[1].id | doi:10.48550/arxiv.2302.08366 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2302.08366 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5003191410 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ruyu Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Ruyu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5091621505 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6958-8015 |
| authorships[1].author.display_name | Sabrina Hoppe |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hoppe, Sabrina |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5071261610 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Eduardo Monari |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Monari, Eduardo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5031354877 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8250-2092 |
| authorships[3].author.display_name | Marco F. Huber |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Huber, Marco F. |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2302.08366 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Defect Transfer GAN: Diverse Defect Synthesis for Data Augmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W4313443006, https://openalex.org/W2945374968, https://openalex.org/W4385452045, https://openalex.org/W4293777179, https://openalex.org/W2164070813, https://openalex.org/W2135608140, https://openalex.org/W2895525995, https://openalex.org/W4224231624, https://openalex.org/W2332512904, https://openalex.org/W2319626700 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2302.08366 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2302.08366 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2302.08366 |
| primary_location.id | pmh:oai:arXiv.org:2302.08366 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2302.08366 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2302.08366 |
| publication_date | 2023-02-16 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 49, 57, 118 |
| abstract_inverted_index.-- | 124 |
| abstract_inverted_index.AD | 93 |
| abstract_inverted_index.An | 87 |
| abstract_inverted_index.In | 52 |
| abstract_inverted_index.We | 113 |
| abstract_inverted_index.in | 7, 48, 110, 122, 139 |
| abstract_inverted_index.of | 70 |
| abstract_inverted_index.on | 14, 42, 90 |
| abstract_inverted_index.to | 36, 65, 82, 150, 153 |
| abstract_inverted_index.up | 149 |
| abstract_inverted_index.we | 55 |
| abstract_inverted_index.51% | 151 |
| abstract_inverted_index.For | 12 |
| abstract_inverted_index.GAN | 61 |
| abstract_inverted_index.The | 31 |
| abstract_inverted_index.and | 1, 71, 76, 94, 108, 144, 156 |
| abstract_inverted_index.are | 3, 21 |
| abstract_inverted_index.can | 78 |
| abstract_inverted_index.few | 50, 141 |
| abstract_inverted_index.for | 29, 117 |
| abstract_inverted_index.may | 45 |
| abstract_inverted_index.the | 91, 130, 140, 146 |
| abstract_inverted_index.two | 4, 95 |
| abstract_inverted_index.yet | 77 |
| abstract_inverted_index.both | 154 |
| abstract_inverted_index.come | 27 |
| abstract_inverted_index.data | 132, 158 |
| abstract_inverted_index.deep | 9 |
| abstract_inverted_index.each | 38 |
| abstract_inverted_index.even | 138 |
| abstract_inverted_index.from | 133 |
| abstract_inverted_index.many | 8 |
| abstract_inverted_index.only | 46 |
| abstract_inverted_index.rate | 148 |
| abstract_inverted_index.seem | 35 |
| abstract_inverted_index.show | 128 |
| abstract_inverted_index.task | 121 |
| abstract_inverted_index.that | 129 |
| abstract_inverted_index.this | 53 |
| abstract_inverted_index.MVTec | 92 |
| abstract_inverted_index.apply | 79 |
| abstract_inverted_index.e.g., | 40 |
| abstract_inverted_index.error | 147 |
| abstract_inverted_index.free. | 30 |
| abstract_inverted_index.gains | 137 |
| abstract_inverted_index.image | 102 |
| abstract_inverted_index.major | 5 |
| abstract_inverted_index.often | 34 |
| abstract_inverted_index.study | 89 |
| abstract_inverted_index.types | 68 |
| abstract_inverted_index.which | 63 |
| abstract_inverted_index.while | 24 |
| abstract_inverted_index.work, | 54 |
| abstract_inverted_index.DT-GAN | 99, 134 |
| abstract_inverted_index.Defect | 59 |
| abstract_inverted_index.across | 72 |
| abstract_inverted_index.almost | 28 |
| abstract_inverted_index.defect | 67, 111, 125 |
| abstract_inverted_index.differ | 47 |
| abstract_inverted_index.hardly | 22 |
| abstract_inverted_index.highly | 15 |
| abstract_inverted_index.learns | 64 |
| abstract_inverted_index.lines, | 18 |
| abstract_inverted_index.other, | 39 |
| abstract_inverted_index.regime | 143 |
| abstract_inverted_index.sample | 106 |
| abstract_inverted_index.styles | 81 |
| abstract_inverted_index.w.r.t. | 105 |
| abstract_inverted_index.Results | 127 |
| abstract_inverted_index.defects | 32 |
| abstract_inverted_index.further | 114 |
| abstract_inverted_index.however | 33 |
| abstract_inverted_index.images. | 86 |
| abstract_inverted_index.methods | 104 |
| abstract_inverted_index.reduces | 145 |
| abstract_inverted_index.samples | 20, 26, 142 |
| abstract_inverted_index.various | 73 |
| abstract_inverted_index.Transfer | 60 |
| abstract_inverted_index.acquired | 23 |
| abstract_inverted_index.advanced | 157 |
| abstract_inverted_index.benefits | 116 |
| abstract_inverted_index.compared | 152 |
| abstract_inverted_index.critical | 119 |
| abstract_inverted_index.datasets | 97 |
| abstract_inverted_index.example, | 13 |
| abstract_inverted_index.fidelity | 107 |
| abstract_inverted_index.generate | 83 |
| abstract_inverted_index.learning | 10 |
| abstract_inverted_index.methods. | 160 |
| abstract_inverted_index.pitfalls | 6 |
| abstract_inverted_index.products | 44, 75 |
| abstract_inverted_index.provides | 135 |
| abstract_inverted_index.resemble | 37 |
| abstract_inverted_index.showcase | 98 |
| abstract_inverted_index.(DT-GAN), | 62 |
| abstract_inverted_index.augmented | 131 |
| abstract_inverted_index.defective | 19, 85 |
| abstract_inverted_index.different | 43 |
| abstract_inverted_index.diversity | 109 |
| abstract_inverted_index.empirical | 88 |
| abstract_inverted_index.introduce | 56 |
| abstract_inverted_index.optimized | 16 |
| abstract_inverted_index.realistic | 84 |
| abstract_inverted_index.represent | 66 |
| abstract_inverted_index.scratches | 41 |
| abstract_inverted_index.synthesis | 103 |
| abstract_inverted_index.additional | 96 |
| abstract_inverted_index.background | 74 |
| abstract_inverted_index.consistent | 136 |
| abstract_inverted_index.downstream | 120 |
| abstract_inverted_index.framework, | 58 |
| abstract_inverted_index.production | 17 |
| abstract_inverted_index.Data-hunger | 0 |
| abstract_inverted_index.approaches. | 11 |
| abstract_inverted_index.demonstrate | 115 |
| abstract_inverted_index.generation. | 112 |
| abstract_inverted_index.independent | 69 |
| abstract_inverted_index.outperforms | 100 |
| abstract_inverted_index.traditional | 155 |
| abstract_inverted_index.augmentation | 159 |
| abstract_inverted_index.manufacturing | 123 |
| abstract_inverted_index.non-defective | 25 |
| abstract_inverted_index.data-imbalance | 2 |
| abstract_inverted_index.classification. | 126 |
| abstract_inverted_index.defect-specific | 80 |
| abstract_inverted_index.characteristics. | 51 |
| abstract_inverted_index.state-of-the-art | 101 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.8399999737739563 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile |