Deferred statistical convergence and power summability method for q-Laguerre polynomials operator Article Swipe
P. N. Agrawal
,
Behar Baxhaku
,
Sompal Singh
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.7153/jmi-2022-16-68
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.7153/jmi-2022-16-68
In the present article, we discuss the Korovkin type approximation thereoms and the rate of convergence with the aid of the modulus of continuity using deferred statistical convergence and the power series summability technique for an operator based on q -Laguerre polynomials introduced by Özarslan (Studia Sci.Math.Hungar., 44 (1), 65-80).We also define the r -th order generalization of these operators by means of the Taylor polynomial to approximate functions in f ∈ C r [0,1] such that f (r) ∈ Lip K α , 0 < α 1 .Furthermore, we find an estimate of the rate of convergence of the q -Laguerre operator acting on f at those points x where the one sided q -derivatives D + q f and D - q f exist.
Related Topics
Concepts
Laguerre polynomials
Mathematics
Operator (biology)
Convergence (economics)
Power (physics)
Laguerre's method
Orthogonal polynomials
Applied mathematics
Classical orthogonal polynomials
Pure mathematics
Gene
Economics
Repressor
Transcription factor
Biochemistry
Economic growth
Chemistry
Quantum mechanics
Physics
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.7153/jmi-2022-16-68
- http://files.ele-math.com/abstracts/jmi-16-68-abs.pdf
- OA Status
- diamond
- Cited By
- 3
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4312287016
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4312287016Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.7153/jmi-2022-16-68Digital Object Identifier
- Title
-
Deferred statistical convergence and power summability method for q-Laguerre polynomials operatorWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
P. N. Agrawal, Behar Baxhaku, Sompal SinghList of authors in order
- Landing page
-
https://doi.org/10.7153/jmi-2022-16-68Publisher landing page
- PDF URL
-
https://files.ele-math.com/abstracts/jmi-16-68-abs.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://files.ele-math.com/abstracts/jmi-16-68-abs.pdfDirect OA link when available
- Concepts
-
Laguerre polynomials, Mathematics, Operator (biology), Convergence (economics), Power (physics), Laguerre's method, Orthogonal polynomials, Applied mathematics, Classical orthogonal polynomials, Pure mathematics, Gene, Economics, Repressor, Transcription factor, Biochemistry, Economic growth, Chemistry, Quantum mechanics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4312287016 |
|---|---|
| doi | https://doi.org/10.7153/jmi-2022-16-68 |
| ids.doi | https://doi.org/10.7153/jmi-2022-16-68 |
| ids.openalex | https://openalex.org/W4312287016 |
| fwci | 1.25232249 |
| type | article |
| title | Deferred statistical convergence and power summability method for q-Laguerre polynomials operator |
| biblio.issue | 3 |
| biblio.volume | |
| biblio.last_page | 1028 |
| biblio.first_page | 1005 |
| topics[0].id | https://openalex.org/T12062 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9986000061035156 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Approximation Theory and Sequence Spaces |
| topics[1].id | https://openalex.org/T12661 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9789999723434448 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2612 |
| topics[1].subfield.display_name | Numerical Analysis |
| topics[1].display_name | Iterative Methods for Nonlinear Equations |
| topics[2].id | https://openalex.org/T11191 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9746999740600586 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2604 |
| topics[2].subfield.display_name | Applied Mathematics |
| topics[2].display_name | Mathematical functions and polynomials |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C108408018 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8982565999031067 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1124546 |
| concepts[0].display_name | Laguerre polynomials |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8542406558990479 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C17020691 |
| concepts[2].level | 5 |
| concepts[2].score | 0.6806052327156067 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q139677 |
| concepts[2].display_name | Operator (biology) |
| concepts[3].id | https://openalex.org/C2777303404 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6328092813491821 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[3].display_name | Convergence (economics) |
| concepts[4].id | https://openalex.org/C163258240 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5050433278083801 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[4].display_name | Power (physics) |
| concepts[5].id | https://openalex.org/C43475892 |
| concepts[5].level | 4 |
| concepts[5].score | 0.48128145933151245 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1171964 |
| concepts[5].display_name | Laguerre's method |
| concepts[6].id | https://openalex.org/C10628310 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4474060535430908 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q619458 |
| concepts[6].display_name | Orthogonal polynomials |
| concepts[7].id | https://openalex.org/C28826006 |
| concepts[7].level | 1 |
| concepts[7].score | 0.429470032453537 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[7].display_name | Applied mathematics |
| concepts[8].id | https://openalex.org/C21736991 |
| concepts[8].level | 3 |
| concepts[8].score | 0.33565807342529297 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17006917 |
| concepts[8].display_name | Classical orthogonal polynomials |
| concepts[9].id | https://openalex.org/C202444582 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3136812746524811 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[9].display_name | Pure mathematics |
| concepts[10].id | https://openalex.org/C104317684 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[10].display_name | Gene |
| concepts[11].id | https://openalex.org/C162324750 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[11].display_name | Economics |
| concepts[12].id | https://openalex.org/C158448853 |
| concepts[12].level | 4 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q425218 |
| concepts[12].display_name | Repressor |
| concepts[13].id | https://openalex.org/C86339819 |
| concepts[13].level | 3 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q407384 |
| concepts[13].display_name | Transcription factor |
| concepts[14].id | https://openalex.org/C55493867 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[14].display_name | Biochemistry |
| concepts[15].id | https://openalex.org/C50522688 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[15].display_name | Economic growth |
| concepts[16].id | https://openalex.org/C185592680 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[16].display_name | Chemistry |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/laguerre-polynomials |
| keywords[0].score | 0.8982565999031067 |
| keywords[0].display_name | Laguerre polynomials |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.8542406558990479 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/operator |
| keywords[2].score | 0.6806052327156067 |
| keywords[2].display_name | Operator (biology) |
| keywords[3].id | https://openalex.org/keywords/convergence |
| keywords[3].score | 0.6328092813491821 |
| keywords[3].display_name | Convergence (economics) |
| keywords[4].id | https://openalex.org/keywords/power |
| keywords[4].score | 0.5050433278083801 |
| keywords[4].display_name | Power (physics) |
| keywords[5].id | https://openalex.org/keywords/laguerres-method |
| keywords[5].score | 0.48128145933151245 |
| keywords[5].display_name | Laguerre's method |
| keywords[6].id | https://openalex.org/keywords/orthogonal-polynomials |
| keywords[6].score | 0.4474060535430908 |
| keywords[6].display_name | Orthogonal polynomials |
| keywords[7].id | https://openalex.org/keywords/applied-mathematics |
| keywords[7].score | 0.429470032453537 |
| keywords[7].display_name | Applied mathematics |
| keywords[8].id | https://openalex.org/keywords/classical-orthogonal-polynomials |
| keywords[8].score | 0.33565807342529297 |
| keywords[8].display_name | Classical orthogonal polynomials |
| keywords[9].id | https://openalex.org/keywords/pure-mathematics |
| keywords[9].score | 0.3136812746524811 |
| keywords[9].display_name | Pure mathematics |
| language | en |
| locations[0].id | doi:10.7153/jmi-2022-16-68 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2480022913 |
| locations[0].source.issn | 1846-579X, 1848-9575 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1846-579X |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Mathematical Inequalities |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | http://files.ele-math.com/abstracts/jmi-16-68-abs.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Mathematical Inequalities |
| locations[0].landing_page_url | https://doi.org/10.7153/jmi-2022-16-68 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5009024429 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | P. N. Agrawal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | P. N. Agrawal |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5041413094 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8990-1440 |
| authorships[1].author.display_name | Behar Baxhaku |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Behar Baxhaku |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5114377409 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7766-4708 |
| authorships[2].author.display_name | Sompal Singh |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Sompal Singh |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://files.ele-math.com/abstracts/jmi-16-68-abs.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deferred statistical convergence and power summability method for q-Laguerre polynomials operator |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12062 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9986000061035156 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Approximation Theory and Sequence Spaces |
| related_works | https://openalex.org/W4312412686, https://openalex.org/W4253809742, https://openalex.org/W1981317805, https://openalex.org/W3102828547, https://openalex.org/W2080525018, https://openalex.org/W1997701590, https://openalex.org/W2961352475, https://openalex.org/W1981129359, https://openalex.org/W1970561544, https://openalex.org/W1967824707 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.7153/jmi-2022-16-68 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2480022913 |
| best_oa_location.source.issn | 1846-579X, 1848-9575 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1846-579X |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Mathematical Inequalities |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://files.ele-math.com/abstracts/jmi-16-68-abs.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Mathematical Inequalities |
| best_oa_location.landing_page_url | https://doi.org/10.7153/jmi-2022-16-68 |
| primary_location.id | doi:10.7153/jmi-2022-16-68 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2480022913 |
| primary_location.source.issn | 1846-579X, 1848-9575 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1846-579X |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Mathematical Inequalities |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | http://files.ele-math.com/abstracts/jmi-16-68-abs.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Mathematical Inequalities |
| primary_location.landing_page_url | https://doi.org/10.7153/jmi-2022-16-68 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3216988992, https://openalex.org/W2949073808, https://openalex.org/W3138306506, https://openalex.org/W2060445959, https://openalex.org/W2319703112, https://openalex.org/W2023433466, https://openalex.org/W1972847999, https://openalex.org/W2950122019, https://openalex.org/W4205354563, https://openalex.org/W2094043756, https://openalex.org/W2316499141, https://openalex.org/W1998020207, https://openalex.org/W2325877082, https://openalex.org/W1996031427, https://openalex.org/W3096595682, https://openalex.org/W2579350161, https://openalex.org/W2997564214, https://openalex.org/W2512648716, https://openalex.org/W2150080768, https://openalex.org/W2326089906, https://openalex.org/W2106524783, https://openalex.org/W2078984934, https://openalex.org/W2915081166, https://openalex.org/W1991802904 |
| referenced_works_count | 24 |
| abstract_inverted_index.+ | 117 |
| abstract_inverted_index., | 83 |
| abstract_inverted_index.- | 122 |
| abstract_inverted_index.0 | 84 |
| abstract_inverted_index.1 | 87 |
| abstract_inverted_index.< | 85 |
| abstract_inverted_index.C | 72 |
| abstract_inverted_index.D | 116, 121 |
| abstract_inverted_index.K | 81 |
| abstract_inverted_index.f | 70, 77, 105, 119, 124 |
| abstract_inverted_index.q | 39, 100, 114, 118, 123 |
| abstract_inverted_index.r | 53, 73 |
| abstract_inverted_index.x | 109 |
| abstract_inverted_index.44 | 47 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.an | 35, 91 |
| abstract_inverted_index.at | 106 |
| abstract_inverted_index.by | 43, 60 |
| abstract_inverted_index.in | 69 |
| abstract_inverted_index.of | 14, 19, 22, 57, 62, 93, 96, 98 |
| abstract_inverted_index.on | 38, 104 |
| abstract_inverted_index.to | 66 |
| abstract_inverted_index.we | 4, 89 |
| abstract_inverted_index.α | 82, 86 |
| abstract_inverted_index.(r) | 78 |
| abstract_inverted_index.-th | 54 |
| abstract_inverted_index.Lip | 80 |
| abstract_inverted_index.aid | 18 |
| abstract_inverted_index.and | 11, 28, 120 |
| abstract_inverted_index.for | 34 |
| abstract_inverted_index.one | 112 |
| abstract_inverted_index.the | 1, 6, 12, 17, 20, 29, 52, 63, 94, 99, 111 |
| abstract_inverted_index.∈ | 71, 79 |
| abstract_inverted_index.(1), | 48 |
| abstract_inverted_index.also | 50 |
| abstract_inverted_index.find | 90 |
| abstract_inverted_index.rate | 13, 95 |
| abstract_inverted_index.such | 75 |
| abstract_inverted_index.that | 76 |
| abstract_inverted_index.type | 8 |
| abstract_inverted_index.with | 16 |
| abstract_inverted_index.[0,1] | 74 |
| abstract_inverted_index.based | 37 |
| abstract_inverted_index.means | 61 |
| abstract_inverted_index.order | 55 |
| abstract_inverted_index.power | 30 |
| abstract_inverted_index.sided | 113 |
| abstract_inverted_index.these | 58 |
| abstract_inverted_index.those | 107 |
| abstract_inverted_index.using | 24 |
| abstract_inverted_index.where | 110 |
| abstract_inverted_index.Taylor | 64 |
| abstract_inverted_index.acting | 103 |
| abstract_inverted_index.define | 51 |
| abstract_inverted_index.exist. | 125 |
| abstract_inverted_index.points | 108 |
| abstract_inverted_index.series | 31 |
| abstract_inverted_index.(Studia | 45 |
| abstract_inverted_index.discuss | 5 |
| abstract_inverted_index.modulus | 21 |
| abstract_inverted_index.present | 2 |
| abstract_inverted_index.Korovkin | 7 |
| abstract_inverted_index.article, | 3 |
| abstract_inverted_index.deferred | 25 |
| abstract_inverted_index.estimate | 92 |
| abstract_inverted_index.operator | 36, 102 |
| abstract_inverted_index.thereoms | 10 |
| abstract_inverted_index.-Laguerre | 40, 101 |
| abstract_inverted_index.65-80).We | 49 |
| abstract_inverted_index.functions | 68 |
| abstract_inverted_index.operators | 59 |
| abstract_inverted_index.technique | 33 |
| abstract_inverted_index.Özarslan | 44 |
| abstract_inverted_index.continuity | 23 |
| abstract_inverted_index.introduced | 42 |
| abstract_inverted_index.polynomial | 65 |
| abstract_inverted_index.approximate | 67 |
| abstract_inverted_index.convergence | 15, 27, 97 |
| abstract_inverted_index.polynomials | 41 |
| abstract_inverted_index.statistical | 26 |
| abstract_inverted_index.summability | 32 |
| abstract_inverted_index.-derivatives | 115 |
| abstract_inverted_index..Furthermore, | 88 |
| abstract_inverted_index.approximation | 9 |
| abstract_inverted_index.generalization | 56 |
| abstract_inverted_index.Sci.Math.Hungar., | 46 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.74574539 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |