Defying Imbalanced Forgetting in Class Incremental Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v38i14.29555
We observe a high level of imbalance in the accuracy of different learned classes in the same old task for the first time. This intriguing phenomenon, discovered in replay-based Class Incremental Learning (CIL), highlights the imbalanced forgetting of learned classes, as their accuracy is similar before the occurrence of catastrophic forgetting. This discovery remains previously unidentified due to the reliance on average incremental accuracy as the measurement for CIL, which assumes that the accuracy of classes within the same task is similar. However, this assumption is invalid in the face of catastrophic forgetting. Further empirical studies indicate that this imbalanced forgetting is caused by conflicts in representation between semantically similar old and new classes. These conflicts are rooted in the data imbalance present in replay-based CIL methods. Building on these insights, we propose CLass-Aware Disentanglement (CLAD) as a means to predict the old classes that are more likely to be forgotten and enhance their accuracy. Importantly, CLAD can be seamlessly integrated into existing CIL methods. Extensive experiments demonstrate that CLAD consistently improves current replay-based methods, resulting in performance gains of up to 2.56%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v38i14.29555
- https://ojs.aaai.org/index.php/AAAI/article/download/29555/30929
- OA Status
- diamond
- Cited By
- 2
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393147303
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393147303Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v38i14.29555Digital Object Identifier
- Title
-
Defying Imbalanced Forgetting in Class Incremental LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-24Full publication date if available
- Authors
-
Xu Shi-xiong, Gaofeng Meng, Xing Nie, Bolin Ni, Bin Fan, Shiming XiangList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v38i14.29555Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/29555/30929Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/29555/30929Direct OA link when available
- Concepts
-
Forgetting, Class (philosophy), Psychology, Cognitive psychology, Artificial intelligence, Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393147303 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v38i14.29555 |
| ids.doi | https://doi.org/10.1609/aaai.v38i14.29555 |
| ids.openalex | https://openalex.org/W4393147303 |
| fwci | 0.48503298 |
| type | article |
| title | Defying Imbalanced Forgetting in Class Incremental Learning |
| biblio.issue | 14 |
| biblio.volume | 38 |
| biblio.last_page | 16219 |
| biblio.first_page | 16211 |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9135000109672546 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C7149132 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9067263603210449 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1377840 |
| concepts[0].display_name | Forgetting |
| concepts[1].id | https://openalex.org/C2777212361 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6569493412971497 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[1].display_name | Class (philosophy) |
| concepts[2].id | https://openalex.org/C15744967 |
| concepts[2].level | 0 |
| concepts[2].score | 0.47498220205307007 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[2].display_name | Psychology |
| concepts[3].id | https://openalex.org/C180747234 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3711727261543274 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[3].display_name | Cognitive psychology |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3648989200592041 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.28019553422927856 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/forgetting |
| keywords[0].score | 0.9067263603210449 |
| keywords[0].display_name | Forgetting |
| keywords[1].id | https://openalex.org/keywords/class |
| keywords[1].score | 0.6569493412971497 |
| keywords[1].display_name | Class (philosophy) |
| keywords[2].id | https://openalex.org/keywords/psychology |
| keywords[2].score | 0.47498220205307007 |
| keywords[2].display_name | Psychology |
| keywords[3].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[3].score | 0.3711727261543274 |
| keywords[3].display_name | Cognitive psychology |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3648989200592041 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.28019553422927856 |
| keywords[5].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.1609/aaai.v38i14.29555 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/29555/30929 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v38i14.29555 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5087162456 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5559-8407 |
| authorships[0].author.display_name | Xu Shi-xiong |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I19820366 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences School of Artificial Intelligence, University of Chinese Academy of Sciences |
| authorships[0].institutions[0].id | https://openalex.org/I19820366 |
| authorships[0].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shixiong Xu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences School of Artificial Intelligence, University of Chinese Academy of Sciences |
| authorships[1].author.id | https://openalex.org/A5100675867 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7103-6321 |
| authorships[1].author.display_name | Gaofeng Meng |
| authorships[1].countries | CN, IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210094879, https://openalex.org/I4210121405, https://openalex.org/I4210165038 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences School of Artificial Intelligence, University of Chinese Academy of Sciences Centre for Artificial Intelligence and Robotics, HK Institute of Science & Innovation, Chinese Academy of Sciences |
| authorships[1].institutions[0].id | https://openalex.org/I4210094879 |
| authorships[1].institutions[0].ror | https://ror.org/00qdtba35 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210094879, https://openalex.org/I4210142748 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shandong Institute of Automation |
| authorships[1].institutions[1].id | https://openalex.org/I4210165038 |
| authorships[1].institutions[1].ror | https://ror.org/05qbk4x57 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | University of Chinese Academy of Sciences |
| authorships[1].institutions[2].id | https://openalex.org/I4210121405 |
| authorships[1].institutions[2].ror | https://ror.org/01xnbq218 |
| authorships[1].institutions[2].type | facility |
| authorships[1].institutions[2].lineage | https://openalex.org/I1340206300, https://openalex.org/I4210121405, https://openalex.org/I4210150591 |
| authorships[1].institutions[2].country_code | IN |
| authorships[1].institutions[2].display_name | Centre for Artificial Intelligence and Robotics |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gaofeng Meng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences School of Artificial Intelligence, University of Chinese Academy of Sciences Centre for Artificial Intelligence and Robotics, HK Institute of Science & Innovation, Chinese Academy of Sciences |
| authorships[2].author.id | https://openalex.org/A5030366529 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Xing Nie |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I19820366 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences School of Artificial Intelligence, University of Chinese Academy of Sciences |
| authorships[2].institutions[0].id | https://openalex.org/I19820366 |
| authorships[2].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xing Nie |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences School of Artificial Intelligence, University of Chinese Academy of Sciences |
| authorships[3].author.id | https://openalex.org/A5012017422 |
| authorships[3].author.orcid | https://orcid.org/0009-0000-7160-5523 |
| authorships[3].author.display_name | Bolin Ni |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I19820366 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences School of Artificial Intelligence, University of Chinese Academy of Sciences |
| authorships[3].institutions[0].id | https://openalex.org/I19820366 |
| authorships[3].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Bolin Ni |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences School of Artificial Intelligence, University of Chinese Academy of Sciences |
| authorships[4].author.id | https://openalex.org/A5064925158 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1155-467X |
| authorships[4].author.display_name | Bin Fan |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I92403157 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Intelligence Science and Technology, University of Science and Technology, Beijing |
| authorships[4].institutions[0].id | https://openalex.org/I92403157 |
| authorships[4].institutions[0].ror | https://ror.org/02egmk993 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I92403157 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | University of Science and Technology Beijing |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Bin Fan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Intelligence Science and Technology, University of Science and Technology, Beijing |
| authorships[5].author.id | https://openalex.org/A5040673285 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2089-9733 |
| authorships[5].author.display_name | Shiming Xiang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I19820366 |
| authorships[5].affiliations[0].raw_affiliation_string | State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences School of Artificial Intelligence, University of Chinese Academy of Sciences |
| authorships[5].institutions[0].id | https://openalex.org/I19820366 |
| authorships[5].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Shiming Xiang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences School of Artificial Intelligence, University of Chinese Academy of Sciences |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/29555/30929 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Defying Imbalanced Forgetting in Class Incremental Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9135000109672546 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W4289718052, https://openalex.org/W2164121020, https://openalex.org/W2145559838, https://openalex.org/W2905319430, https://openalex.org/W3116498279, https://openalex.org/W4287549553, https://openalex.org/W3183027292, https://openalex.org/W4248896073, https://openalex.org/W2974871044 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaai.v38i14.29555 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/29555/30929 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v38i14.29555 |
| primary_location.id | doi:10.1609/aaai.v38i14.29555 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/29555/30929 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v38i14.29555 |
| publication_date | 2024-03-24 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4300571777, https://openalex.org/W2619383789, https://openalex.org/W3017160304, https://openalex.org/W6789883375, https://openalex.org/W3206747935, https://openalex.org/W6676297131, https://openalex.org/W3045042590, https://openalex.org/W2980753060, https://openalex.org/W3177306522, https://openalex.org/W6687483927, https://openalex.org/W2948734064, https://openalex.org/W3134956609, https://openalex.org/W6720711607, https://openalex.org/W3140185934, https://openalex.org/W3100156920, https://openalex.org/W6741087337, https://openalex.org/W1682403713, https://openalex.org/W3097784654, https://openalex.org/W2116522068, https://openalex.org/W6788757688, https://openalex.org/W4200635678, https://openalex.org/W6762867720, https://openalex.org/W3140236729, https://openalex.org/W3144281354, https://openalex.org/W4312771814, https://openalex.org/W1821462560, https://openalex.org/W2963390791, https://openalex.org/W4327666330, https://openalex.org/W3118608800, https://openalex.org/W3037967334, https://openalex.org/W4287285787, https://openalex.org/W4295883599, https://openalex.org/W3138136049, https://openalex.org/W4287814827, https://openalex.org/W2964189064, https://openalex.org/W2902625698, https://openalex.org/W3125380646, https://openalex.org/W2939137134, https://openalex.org/W2194775991, https://openalex.org/W4312724926, https://openalex.org/W4301104990, https://openalex.org/W2473930607, https://openalex.org/W4287936108, https://openalex.org/W4287251158, https://openalex.org/W2954929116, https://openalex.org/W2108598243, https://openalex.org/W3130138360 |
| referenced_works_count | 47 |
| abstract_inverted_index.a | 2, 137 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.as | 40, 64, 136 |
| abstract_inverted_index.be | 149, 158 |
| abstract_inverted_index.by | 103 |
| abstract_inverted_index.in | 7, 14, 27, 87, 105, 118, 123, 176 |
| abstract_inverted_index.is | 43, 80, 85, 101 |
| abstract_inverted_index.of | 5, 10, 37, 48, 74, 90, 179 |
| abstract_inverted_index.on | 60, 128 |
| abstract_inverted_index.to | 57, 139, 148, 181 |
| abstract_inverted_index.up | 180 |
| abstract_inverted_index.we | 131 |
| abstract_inverted_index.CIL | 125, 163 |
| abstract_inverted_index.and | 111, 151 |
| abstract_inverted_index.are | 116, 145 |
| abstract_inverted_index.can | 157 |
| abstract_inverted_index.due | 56 |
| abstract_inverted_index.for | 19, 67 |
| abstract_inverted_index.new | 112 |
| abstract_inverted_index.old | 17, 110, 142 |
| abstract_inverted_index.the | 8, 15, 20, 34, 46, 58, 65, 72, 77, 88, 119, 141 |
| abstract_inverted_index.CIL, | 68 |
| abstract_inverted_index.CLAD | 156, 169 |
| abstract_inverted_index.This | 23, 51 |
| abstract_inverted_index.data | 120 |
| abstract_inverted_index.face | 89 |
| abstract_inverted_index.high | 3 |
| abstract_inverted_index.into | 161 |
| abstract_inverted_index.more | 146 |
| abstract_inverted_index.same | 16, 78 |
| abstract_inverted_index.task | 18, 79 |
| abstract_inverted_index.that | 71, 97, 144, 168 |
| abstract_inverted_index.this | 83, 98 |
| abstract_inverted_index.Class | 29 |
| abstract_inverted_index.These | 114 |
| abstract_inverted_index.first | 21 |
| abstract_inverted_index.gains | 178 |
| abstract_inverted_index.level | 4 |
| abstract_inverted_index.means | 138 |
| abstract_inverted_index.their | 41, 153 |
| abstract_inverted_index.these | 129 |
| abstract_inverted_index.time. | 22 |
| abstract_inverted_index.which | 69 |
| abstract_inverted_index.(CIL), | 32 |
| abstract_inverted_index.(CLAD) | 135 |
| abstract_inverted_index.2.56%. | 182 |
| abstract_inverted_index.before | 45 |
| abstract_inverted_index.caused | 102 |
| abstract_inverted_index.likely | 147 |
| abstract_inverted_index.rooted | 117 |
| abstract_inverted_index.within | 76 |
| abstract_inverted_index.Further | 93 |
| abstract_inverted_index.assumes | 70 |
| abstract_inverted_index.average | 61 |
| abstract_inverted_index.between | 107 |
| abstract_inverted_index.classes | 13, 75, 143 |
| abstract_inverted_index.current | 172 |
| abstract_inverted_index.enhance | 152 |
| abstract_inverted_index.invalid | 86 |
| abstract_inverted_index.learned | 12, 38 |
| abstract_inverted_index.observe | 1 |
| abstract_inverted_index.predict | 140 |
| abstract_inverted_index.present | 122 |
| abstract_inverted_index.propose | 132 |
| abstract_inverted_index.remains | 53 |
| abstract_inverted_index.similar | 44, 109 |
| abstract_inverted_index.studies | 95 |
| abstract_inverted_index.Building | 127 |
| abstract_inverted_index.However, | 82 |
| abstract_inverted_index.Learning | 31 |
| abstract_inverted_index.accuracy | 9, 42, 63, 73 |
| abstract_inverted_index.classes, | 39 |
| abstract_inverted_index.classes. | 113 |
| abstract_inverted_index.existing | 162 |
| abstract_inverted_index.improves | 171 |
| abstract_inverted_index.indicate | 96 |
| abstract_inverted_index.methods, | 174 |
| abstract_inverted_index.methods. | 126, 164 |
| abstract_inverted_index.reliance | 59 |
| abstract_inverted_index.similar. | 81 |
| abstract_inverted_index.Extensive | 165 |
| abstract_inverted_index.accuracy. | 154 |
| abstract_inverted_index.conflicts | 104, 115 |
| abstract_inverted_index.different | 11 |
| abstract_inverted_index.discovery | 52 |
| abstract_inverted_index.empirical | 94 |
| abstract_inverted_index.forgotten | 150 |
| abstract_inverted_index.imbalance | 6, 121 |
| abstract_inverted_index.insights, | 130 |
| abstract_inverted_index.resulting | 175 |
| abstract_inverted_index.assumption | 84 |
| abstract_inverted_index.discovered | 26 |
| abstract_inverted_index.forgetting | 36, 100 |
| abstract_inverted_index.highlights | 33 |
| abstract_inverted_index.imbalanced | 35, 99 |
| abstract_inverted_index.integrated | 160 |
| abstract_inverted_index.intriguing | 24 |
| abstract_inverted_index.occurrence | 47 |
| abstract_inverted_index.previously | 54 |
| abstract_inverted_index.seamlessly | 159 |
| abstract_inverted_index.CLass-Aware | 133 |
| abstract_inverted_index.Incremental | 30 |
| abstract_inverted_index.demonstrate | 167 |
| abstract_inverted_index.experiments | 166 |
| abstract_inverted_index.forgetting. | 50, 92 |
| abstract_inverted_index.incremental | 62 |
| abstract_inverted_index.measurement | 66 |
| abstract_inverted_index.performance | 177 |
| abstract_inverted_index.phenomenon, | 25 |
| abstract_inverted_index.Importantly, | 155 |
| abstract_inverted_index.catastrophic | 49, 91 |
| abstract_inverted_index.consistently | 170 |
| abstract_inverted_index.replay-based | 28, 124, 173 |
| abstract_inverted_index.semantically | 108 |
| abstract_inverted_index.unidentified | 55 |
| abstract_inverted_index.representation | 106 |
| abstract_inverted_index.Disentanglement | 134 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.45334739 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |