Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.17157
Large language models (LLMs) with hundreds of billions of parameters have sparked a new wave of exciting AI applications. However, they are computationally expensive at inference time. Sparsity is a natural approach to reduce this cost, but existing methods either require costly retraining, have to forgo LLM's in-context learning ability, or do not yield wall-clock time speedup on modern hardware. We hypothesize that contextual sparsity, which are small, input-dependent sets of attention heads and MLP parameters that yield approximately the same output as the dense model for a given input, can address these issues. We show that contextual sparsity exists, that it can be accurately predicted, and that we can exploit it to speed up LLM inference in wall-clock time without compromising LLM's quality or in-context learning ability. Based on these insights, we propose DejaVu, a system that uses a low-cost algorithm to predict contextual sparsity on the fly given inputs to each layer, along with an asynchronous and hardware-aware implementation that speeds up LLM inference. We validate that DejaVu can reduce the inference latency of OPT-175B by over 2X compared to the state-of-the-art FasterTransformer, and over 6X compared to the widely used Hugging Face implementation, without compromising model quality. The code is available at https://github.com/FMInference/DejaVu.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2310.17157
- https://arxiv.org/pdf/2310.17157
- OA Status
- green
- Cited By
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387995158
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387995158Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.17157Digital Object Identifier
- Title
-
Deja Vu: Contextual Sparsity for Efficient LLMs at Inference TimeWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-26Full publication date if available
- Authors
-
Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang, Yuandong Tian, Christopher Ré, Beidi ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2310.17157Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2310.17157Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.17157Direct OA link when available
- Concepts
-
Computer science, Inference, Speedup, Asynchronous communication, Context (archaeology), Exploit, Machine learning, Artificial intelligence, Latency (audio), Deep learning, Parallel computing, Computer security, Biology, Telecommunications, Computer network, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
19Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 10, 2023: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387995158 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.17157 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.17157 |
| ids.openalex | https://openalex.org/W4387995158 |
| fwci | 4.85341487 |
| type | preprint |
| title | Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T12808 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9896000027656555 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Ferroelectric and Negative Capacitance Devices |
| topics[2].id | https://openalex.org/T11948 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.987500011920929 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | Machine Learning in Materials Science |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7886679172515869 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7877718210220337 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C68339613 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7246477007865906 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1549489 |
| concepts[2].display_name | Speedup |
| concepts[3].id | https://openalex.org/C151319957 |
| concepts[3].level | 2 |
| concepts[3].score | 0.664324939250946 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q752739 |
| concepts[3].display_name | Asynchronous communication |
| concepts[4].id | https://openalex.org/C2779343474 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6112827062606812 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[4].display_name | Context (archaeology) |
| concepts[5].id | https://openalex.org/C165696696 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6098564267158508 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[5].display_name | Exploit |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.536709189414978 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4939585328102112 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C82876162 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45882534980773926 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17096504 |
| concepts[8].display_name | Latency (audio) |
| concepts[9].id | https://openalex.org/C108583219 |
| concepts[9].level | 2 |
| concepts[9].score | 0.45414280891418457 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[9].display_name | Deep learning |
| concepts[10].id | https://openalex.org/C173608175 |
| concepts[10].level | 1 |
| concepts[10].score | 0.19351696968078613 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[10].display_name | Parallel computing |
| concepts[11].id | https://openalex.org/C38652104 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1031084954738617 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[11].display_name | Computer security |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C76155785 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[13].display_name | Telecommunications |
| concepts[14].id | https://openalex.org/C31258907 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[14].display_name | Computer network |
| concepts[15].id | https://openalex.org/C151730666 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[15].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7886679172515869 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.7877718210220337 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/speedup |
| keywords[2].score | 0.7246477007865906 |
| keywords[2].display_name | Speedup |
| keywords[3].id | https://openalex.org/keywords/asynchronous-communication |
| keywords[3].score | 0.664324939250946 |
| keywords[3].display_name | Asynchronous communication |
| keywords[4].id | https://openalex.org/keywords/context |
| keywords[4].score | 0.6112827062606812 |
| keywords[4].display_name | Context (archaeology) |
| keywords[5].id | https://openalex.org/keywords/exploit |
| keywords[5].score | 0.6098564267158508 |
| keywords[5].display_name | Exploit |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.536709189414978 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4939585328102112 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/latency |
| keywords[8].score | 0.45882534980773926 |
| keywords[8].display_name | Latency (audio) |
| keywords[9].id | https://openalex.org/keywords/deep-learning |
| keywords[9].score | 0.45414280891418457 |
| keywords[9].display_name | Deep learning |
| keywords[10].id | https://openalex.org/keywords/parallel-computing |
| keywords[10].score | 0.19351696968078613 |
| keywords[10].display_name | Parallel computing |
| keywords[11].id | https://openalex.org/keywords/computer-security |
| keywords[11].score | 0.1031084954738617 |
| keywords[11].display_name | Computer security |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2310.17157 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2310.17157 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2310.17157 |
| locations[1].id | doi:10.48550/arxiv.2310.17157 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2310.17157 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5091829195 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5556-8117 |
| authorships[0].author.display_name | Zichang Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liu, Zichang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100440609 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6712-1929 |
| authorships[1].author.display_name | Jue Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Jue |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5091734792 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Tri Dao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dao, Tri |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5039076312 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5348-0632 |
| authorships[3].author.display_name | Tianyi Zhou |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhou, Tianyi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5002684888 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3188-2769 |
| authorships[4].author.display_name | Binhang Yuan |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yuan, Binhang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5014701378 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8787-5250 |
| authorships[5].author.display_name | Zhao Song |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Song, Zhao |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5024993683 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5042-2856 |
| authorships[6].author.display_name | Anshumali Shrivastava |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Shrivastava, Anshumali |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5004750246 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-5100-3584 |
| authorships[7].author.display_name | Ce Zhang |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Zhang, Ce |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5084821923 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-4202-4847 |
| authorships[8].author.display_name | Yuandong Tian |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Tian, Yuandong |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5103852640 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Christopher Ré |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Re, Christopher |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5031842648 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-7586-1855 |
| authorships[10].author.display_name | Beidi Chen |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Chen, Beidi |
| authorships[10].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.17157 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2058965144, https://openalex.org/W2164382479, https://openalex.org/W2146343568, https://openalex.org/W2168758875, https://openalex.org/W4246549241, https://openalex.org/W2410733619, https://openalex.org/W2963483475, https://openalex.org/W2097707447, https://openalex.org/W3128807919, https://openalex.org/W3176411177 |
| cited_by_count | 19 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.17157 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.17157 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.17157 |
| primary_location.id | pmh:oai:arXiv.org:2310.17157 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2310.17157 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2310.17157 |
| publication_date | 2023-10-26 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 12, 29, 87, 135, 139 |
| abstract_inverted_index.2X | 179 |
| abstract_inverted_index.6X | 187 |
| abstract_inverted_index.AI | 17 |
| abstract_inverted_index.We | 60, 94, 166 |
| abstract_inverted_index.an | 156 |
| abstract_inverted_index.as | 82 |
| abstract_inverted_index.at | 24, 204 |
| abstract_inverted_index.be | 103 |
| abstract_inverted_index.by | 177 |
| abstract_inverted_index.do | 51 |
| abstract_inverted_index.in | 117 |
| abstract_inverted_index.is | 28, 202 |
| abstract_inverted_index.it | 101, 111 |
| abstract_inverted_index.of | 6, 8, 15, 70, 175 |
| abstract_inverted_index.on | 57, 129, 146 |
| abstract_inverted_index.or | 50, 124 |
| abstract_inverted_index.to | 32, 44, 112, 142, 151, 181, 189 |
| abstract_inverted_index.up | 114, 163 |
| abstract_inverted_index.we | 108, 132 |
| abstract_inverted_index.LLM | 115, 164 |
| abstract_inverted_index.MLP | 74 |
| abstract_inverted_index.The | 200 |
| abstract_inverted_index.and | 73, 106, 158, 185 |
| abstract_inverted_index.are | 21, 66 |
| abstract_inverted_index.but | 36 |
| abstract_inverted_index.can | 90, 102, 109, 170 |
| abstract_inverted_index.fly | 148 |
| abstract_inverted_index.for | 86 |
| abstract_inverted_index.new | 13 |
| abstract_inverted_index.not | 52 |
| abstract_inverted_index.the | 79, 83, 147, 172, 182, 190 |
| abstract_inverted_index.Face | 194 |
| abstract_inverted_index.code | 201 |
| abstract_inverted_index.each | 152 |
| abstract_inverted_index.have | 10, 43 |
| abstract_inverted_index.over | 178, 186 |
| abstract_inverted_index.same | 80 |
| abstract_inverted_index.sets | 69 |
| abstract_inverted_index.show | 95 |
| abstract_inverted_index.that | 62, 76, 96, 100, 107, 137, 161, 168 |
| abstract_inverted_index.they | 20 |
| abstract_inverted_index.this | 34 |
| abstract_inverted_index.time | 55, 119 |
| abstract_inverted_index.used | 192 |
| abstract_inverted_index.uses | 138 |
| abstract_inverted_index.wave | 14 |
| abstract_inverted_index.with | 4, 155 |
| abstract_inverted_index.Based | 128 |
| abstract_inverted_index.LLM's | 46, 122 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.along | 154 |
| abstract_inverted_index.cost, | 35 |
| abstract_inverted_index.dense | 84 |
| abstract_inverted_index.forgo | 45 |
| abstract_inverted_index.given | 88, 149 |
| abstract_inverted_index.heads | 72 |
| abstract_inverted_index.model | 85, 198 |
| abstract_inverted_index.speed | 113 |
| abstract_inverted_index.these | 92, 130 |
| abstract_inverted_index.time. | 26 |
| abstract_inverted_index.which | 65 |
| abstract_inverted_index.yield | 53, 77 |
| abstract_inverted_index.(LLMs) | 3 |
| abstract_inverted_index.DejaVu | 169 |
| abstract_inverted_index.costly | 41 |
| abstract_inverted_index.either | 39 |
| abstract_inverted_index.input, | 89 |
| abstract_inverted_index.inputs | 150 |
| abstract_inverted_index.layer, | 153 |
| abstract_inverted_index.models | 2 |
| abstract_inverted_index.modern | 58 |
| abstract_inverted_index.output | 81 |
| abstract_inverted_index.reduce | 33, 171 |
| abstract_inverted_index.small, | 67 |
| abstract_inverted_index.speeds | 162 |
| abstract_inverted_index.system | 136 |
| abstract_inverted_index.widely | 191 |
| abstract_inverted_index.DejaVu, | 134 |
| abstract_inverted_index.Hugging | 193 |
| abstract_inverted_index.address | 91 |
| abstract_inverted_index.exists, | 99 |
| abstract_inverted_index.exploit | 110 |
| abstract_inverted_index.issues. | 93 |
| abstract_inverted_index.latency | 174 |
| abstract_inverted_index.methods | 38 |
| abstract_inverted_index.natural | 30 |
| abstract_inverted_index.predict | 143 |
| abstract_inverted_index.propose | 133 |
| abstract_inverted_index.quality | 123 |
| abstract_inverted_index.require | 40 |
| abstract_inverted_index.sparked | 11 |
| abstract_inverted_index.speedup | 56 |
| abstract_inverted_index.without | 120, 196 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.OPT-175B | 176 |
| abstract_inverted_index.Sparsity | 27 |
| abstract_inverted_index.ability, | 49 |
| abstract_inverted_index.ability. | 127 |
| abstract_inverted_index.approach | 31 |
| abstract_inverted_index.billions | 7 |
| abstract_inverted_index.compared | 180, 188 |
| abstract_inverted_index.exciting | 16 |
| abstract_inverted_index.existing | 37 |
| abstract_inverted_index.hundreds | 5 |
| abstract_inverted_index.language | 1 |
| abstract_inverted_index.learning | 48, 126 |
| abstract_inverted_index.low-cost | 140 |
| abstract_inverted_index.quality. | 199 |
| abstract_inverted_index.sparsity | 98, 145 |
| abstract_inverted_index.validate | 167 |
| abstract_inverted_index.algorithm | 141 |
| abstract_inverted_index.attention | 71 |
| abstract_inverted_index.available | 203 |
| abstract_inverted_index.expensive | 23 |
| abstract_inverted_index.hardware. | 59 |
| abstract_inverted_index.inference | 25, 116, 173 |
| abstract_inverted_index.insights, | 131 |
| abstract_inverted_index.sparsity, | 64 |
| abstract_inverted_index.accurately | 104 |
| abstract_inverted_index.contextual | 63, 97, 144 |
| abstract_inverted_index.in-context | 47, 125 |
| abstract_inverted_index.inference. | 165 |
| abstract_inverted_index.parameters | 9, 75 |
| abstract_inverted_index.predicted, | 105 |
| abstract_inverted_index.wall-clock | 54, 118 |
| abstract_inverted_index.hypothesize | 61 |
| abstract_inverted_index.retraining, | 42 |
| abstract_inverted_index.asynchronous | 157 |
| abstract_inverted_index.compromising | 121, 197 |
| abstract_inverted_index.applications. | 18 |
| abstract_inverted_index.approximately | 78 |
| abstract_inverted_index.hardware-aware | 159 |
| abstract_inverted_index.implementation | 160 |
| abstract_inverted_index.computationally | 22 |
| abstract_inverted_index.implementation, | 195 |
| abstract_inverted_index.input-dependent | 68 |
| abstract_inverted_index.state-of-the-art | 183 |
| abstract_inverted_index.FasterTransformer, | 184 |
| abstract_inverted_index.https://github.com/FMInference/DejaVu. | 205 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 11 |
| citation_normalized_percentile.value | 0.94904731 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |