Delineating retinal breaks in ultra-widefield fundus images with a PraNet-based machine learning model Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.08.01.25332727
Background Retinal breaks are critical lesions that can lead to retinal detachment and vision loss if not detected and treated early. Automated and precise delineation of retinal breaks using ultra- widefield fundus (UWF) images remain a significant challenge in ophthalmology. Objective This study aimed to develop and validate a deep learning model based on the PraNet architecture for the accurate delineation of retinal breaks in UWF images, with a particular focus on segmentation performance in retinal break–positive cases. Methods We developed a deep learning segmentation model based on the PraNet architecture. This study utilized a dataset consisting of 8,083 cases and a total of 34,867 UWF images. Of these, 960 images contained retinal breaks, while the remaining 33,907 images did not. The dataset was split into 34,713 images for training, 81 for validation, and 73 for testing. The model was trained and validated on this dataset. Model performance was evaluated using both image-wise segmentation metrics (accuracy, precision, recall, Intersection over Union (IoU), dice score, centroid distance score) and lesion-wise detection metrics (sensitivity, positive predictive value). Results The PraNet-based model achieved an accuracy of 0.996, a precision of 0.635, a recall of 0.756, an IoU of 0.539, a dice score of 0.652, and a centroid distance score of 0.081 for pixel-level detection of retinal breaks. The lesion-wise sensitivity was calculated as 0.885, and the positive predictive value (PPV) was 0.742. Conclusions To our knowledge, this is the first study to present pixel-level localization of retinal breaks using deep learning on UWF images. Our findings demonstrate that the PraNet-based model provides precise and robust pixel-level segmentation of retinal breaks in UWF images. This approach offers a clinically applicable tool for the precise delineation of retinal breaks, with the potential to improve patient outcomes. Future work should focus on external validation across multiple institutions and integration of additional annotation strategies to further enhance model performance and generalizability.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2025.08.01.25332727
- https://www.medrxiv.org/content/medrxiv/early/2025/08/05/2025.08.01.25332727.full.pdf
- OA Status
- green
- References
- 20
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412994428
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412994428Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.08.01.25332727Digital Object Identifier
- Title
-
Delineating retinal breaks in ultra-widefield fundus images with a PraNet-based machine learning modelWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-05Full publication date if available
- Authors
-
Takuya Takayama, Toshiyuki Uto, Taiki Tsuge, Yusuke Kondo, Hironobu Tampo, M. Chiba, Toshikatsu Kaburaki, Yasuo Yanagi, Hidenori TakahashiList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.08.01.25332727Publisher landing page
- PDF URL
-
https://www.medrxiv.org/content/medrxiv/early/2025/08/05/2025.08.01.25332727.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.medrxiv.org/content/medrxiv/early/2025/08/05/2025.08.01.25332727.full.pdfDirect OA link when available
- Concepts
-
Fundus (uterus), Retinal, Computer science, Artificial intelligence, Ophthalmology, Optometry, MedicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
20Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412994428 |
|---|---|
| doi | https://doi.org/10.1101/2025.08.01.25332727 |
| ids.doi | https://doi.org/10.1101/2025.08.01.25332727 |
| ids.openalex | https://openalex.org/W4412994428 |
| fwci | 0.0 |
| type | preprint |
| title | Delineating retinal breaks in ultra-widefield fundus images with a PraNet-based machine learning model |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11438 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Retinal Imaging and Analysis |
| topics[1].id | https://openalex.org/T12599 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9894999861717224 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2731 |
| topics[1].subfield.display_name | Ophthalmology |
| topics[1].display_name | Retinal and Optic Conditions |
| topics[2].id | https://openalex.org/T11636 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9886999726295471 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2718 |
| topics[2].subfield.display_name | Health Informatics |
| topics[2].display_name | Artificial Intelligence in Healthcare and Education |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776391266 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7557578086853027 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q9612 |
| concepts[0].display_name | Fundus (uterus) |
| concepts[1].id | https://openalex.org/C2780827179 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6318343877792358 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q422001 |
| concepts[1].display_name | Retinal |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.566672682762146 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4514554440975189 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C118487528 |
| concepts[4].level | 1 |
| concepts[4].score | 0.43141740560531616 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q161437 |
| concepts[4].display_name | Ophthalmology |
| concepts[5].id | https://openalex.org/C119767625 |
| concepts[5].level | 1 |
| concepts[5].score | 0.42440035939216614 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q618211 |
| concepts[5].display_name | Optometry |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.1927093267440796 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| keywords[0].id | https://openalex.org/keywords/fundus |
| keywords[0].score | 0.7557578086853027 |
| keywords[0].display_name | Fundus (uterus) |
| keywords[1].id | https://openalex.org/keywords/retinal |
| keywords[1].score | 0.6318343877792358 |
| keywords[1].display_name | Retinal |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.566672682762146 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4514554440975189 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/ophthalmology |
| keywords[4].score | 0.43141740560531616 |
| keywords[4].display_name | Ophthalmology |
| keywords[5].id | https://openalex.org/keywords/optometry |
| keywords[5].score | 0.42440035939216614 |
| keywords[5].display_name | Optometry |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.1927093267440796 |
| keywords[6].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1101/2025.08.01.25332727 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.medrxiv.org/content/medrxiv/early/2025/08/05/2025.08.01.25332727.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.08.01.25332727 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5085858181 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5774-0016 |
| authorships[0].author.display_name | Takuya Takayama |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I146500386 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Ophthalmology, Jichi Medical University, Shimotsuke, Tochigi, Japan |
| authorships[0].institutions[0].id | https://openalex.org/I146500386 |
| authorships[0].institutions[0].ror | https://ror.org/010hz0g26 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I146500386 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Jichi Medical University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Takuya Takayama |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Ophthalmology, Jichi Medical University, Shimotsuke, Tochigi, Japan |
| authorships[1].author.id | https://openalex.org/A5037955080 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Toshiyuki Uto |
| authorships[1].affiliations[0].raw_affiliation_string | DeepEyeVision, Inc, Shimotsuke, Tochigi, Japan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tsubasa Uto |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | DeepEyeVision, Inc, Shimotsuke, Tochigi, Japan |
| authorships[2].author.id | https://openalex.org/A5119222613 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Taiki Tsuge |
| authorships[2].affiliations[0].raw_affiliation_string | DeepEyeVision, Inc, Shimotsuke, Tochigi, Japan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Taiki Tsuge |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | DeepEyeVision, Inc, Shimotsuke, Tochigi, Japan |
| authorships[3].author.id | https://openalex.org/A5058786365 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1975-3796 |
| authorships[3].author.display_name | Yusuke Kondo |
| authorships[3].affiliations[0].raw_affiliation_string | DeepEyeVision, Inc, Shimotsuke, Tochigi, Japan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yusuke Kondo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | DeepEyeVision, Inc, Shimotsuke, Tochigi, Japan |
| authorships[4].author.id | https://openalex.org/A5071637704 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Hironobu Tampo |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I146500386 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Ophthalmology, Jichi Medical University, Shimotsuke, Tochigi, Japan |
| authorships[4].institutions[0].id | https://openalex.org/I146500386 |
| authorships[4].institutions[0].ror | https://ror.org/010hz0g26 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I146500386 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | Jichi Medical University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hironobu Tampo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Ophthalmology, Jichi Medical University, Shimotsuke, Tochigi, Japan |
| authorships[5].author.id | https://openalex.org/A5109185454 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | M. Chiba |
| authorships[5].countries | JP |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I146500386 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Ophthalmology, Jichi Medical University, Shimotsuke, Tochigi, Japan |
| authorships[5].institutions[0].id | https://openalex.org/I146500386 |
| authorships[5].institutions[0].ror | https://ror.org/010hz0g26 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I146500386 |
| authorships[5].institutions[0].country_code | JP |
| authorships[5].institutions[0].display_name | Jichi Medical University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Mayumi Chiba |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Ophthalmology, Jichi Medical University, Shimotsuke, Tochigi, Japan |
| authorships[6].author.id | https://openalex.org/A5023536826 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1132-6148 |
| authorships[6].author.display_name | Toshikatsu Kaburaki |
| authorships[6].countries | JP |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I146500386 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Ophthalmology, Jichi Medical University, Shimotsuke, Tochigi, Japan |
| authorships[6].institutions[0].id | https://openalex.org/I146500386 |
| authorships[6].institutions[0].ror | https://ror.org/010hz0g26 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I146500386 |
| authorships[6].institutions[0].country_code | JP |
| authorships[6].institutions[0].display_name | Jichi Medical University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Toshikatsu Kaburaki |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Ophthalmology, Jichi Medical University, Shimotsuke, Tochigi, Japan |
| authorships[7].author.id | https://openalex.org/A5080762568 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-0362-7285 |
| authorships[7].author.display_name | Yasuo Yanagi |
| authorships[7].countries | JP, SG |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210116917 |
| authorships[7].affiliations[0].raw_affiliation_string | Retina Research Group, Singapore Eye Research Institute, Singapore, Singapore |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I89630735 |
| authorships[7].affiliations[1].raw_affiliation_string | Department of Ophthalmology, Yokohama City University, Kanagawa, Japan |
| authorships[7].institutions[0].id | https://openalex.org/I89630735 |
| authorships[7].institutions[0].ror | https://ror.org/0135d1r83 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I89630735 |
| authorships[7].institutions[0].country_code | JP |
| authorships[7].institutions[0].display_name | Yokohama City University |
| authorships[7].institutions[1].id | https://openalex.org/I4210116917 |
| authorships[7].institutions[1].ror | https://ror.org/02crz6e12 |
| authorships[7].institutions[1].type | facility |
| authorships[7].institutions[1].lineage | https://openalex.org/I4210116917 |
| authorships[7].institutions[1].country_code | SG |
| authorships[7].institutions[1].display_name | Singapore Eye Research Institute |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Yasuo Yanagi |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Ophthalmology, Yokohama City University, Kanagawa, Japan, Retina Research Group, Singapore Eye Research Institute, Singapore, Singapore |
| authorships[8].author.id | https://openalex.org/A5032313766 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-5331-4730 |
| authorships[8].author.display_name | Hidenori Takahashi |
| authorships[8].countries | JP |
| authorships[8].affiliations[0].raw_affiliation_string | Center for Cyber Medicine Research, Tsukuba University, Ibaraki, Japan |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I146500386 |
| authorships[8].affiliations[1].raw_affiliation_string | Department of Ophthalmology, Jichi Medical University, Shimotsuke, Tochigi, Japan |
| authorships[8].institutions[0].id | https://openalex.org/I146500386 |
| authorships[8].institutions[0].ror | https://ror.org/010hz0g26 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I146500386 |
| authorships[8].institutions[0].country_code | JP |
| authorships[8].institutions[0].display_name | Jichi Medical University |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Hidenori Takahashi |
| authorships[8].is_corresponding | True |
| authorships[8].raw_affiliation_strings | Center for Cyber Medicine Research, Tsukuba University, Ibaraki, Japan, Department of Ophthalmology, Jichi Medical University, Shimotsuke, Tochigi, Japan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.medrxiv.org/content/medrxiv/early/2025/08/05/2025.08.01.25332727.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Delineating retinal breaks in ultra-widefield fundus images with a PraNet-based machine learning model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11438 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Retinal Imaging and Analysis |
| related_works | https://openalex.org/W2374520121, https://openalex.org/W4387265590, https://openalex.org/W2394034517, https://openalex.org/W1995904975, https://openalex.org/W2364945429, https://openalex.org/W4388037085, https://openalex.org/W3032712071, https://openalex.org/W4389019322, https://openalex.org/W806426592, https://openalex.org/W4390608506 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2025.08.01.25332727 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2025/08/05/2025.08.01.25332727.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.08.01.25332727 |
| primary_location.id | doi:10.1101/2025.08.01.25332727 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2025/08/05/2025.08.01.25332727.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.08.01.25332727 |
| publication_date | 2025-08-05 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3110220146, https://openalex.org/W2147860717, https://openalex.org/W199633366, https://openalex.org/W2975924622, https://openalex.org/W2793570745, https://openalex.org/W2314257879, https://openalex.org/W2934399013, https://openalex.org/W2903896358, https://openalex.org/W4281639294, https://openalex.org/W3045215429, https://openalex.org/W3092344722, https://openalex.org/W4311715373, https://openalex.org/W4393530881, https://openalex.org/W4281977119, https://openalex.org/W4317869168, https://openalex.org/W4376643967, https://openalex.org/W3013545899, https://openalex.org/W2991326607, https://openalex.org/W4391570707, https://openalex.org/W4324020180 |
| referenced_works_count | 20 |
| abstract_inverted_index.a | 36, 49, 69, 82, 95, 102, 185, 189, 197, 203, 274 |
| abstract_inverted_index.73 | 135 |
| abstract_inverted_index.81 | 131 |
| abstract_inverted_index.Of | 108 |
| abstract_inverted_index.To | 231 |
| abstract_inverted_index.We | 80 |
| abstract_inverted_index.an | 181, 193 |
| abstract_inverted_index.as | 220 |
| abstract_inverted_index.if | 16 |
| abstract_inverted_index.in | 39, 65, 75, 268 |
| abstract_inverted_index.is | 235 |
| abstract_inverted_index.of | 26, 62, 98, 104, 183, 187, 191, 195, 200, 207, 212, 243, 265, 282, 304 |
| abstract_inverted_index.on | 54, 72, 88, 144, 249, 296 |
| abstract_inverted_index.to | 10, 45, 239, 288, 308 |
| abstract_inverted_index.960 | 110 |
| abstract_inverted_index.IoU | 194 |
| abstract_inverted_index.Our | 252 |
| abstract_inverted_index.The | 122, 138, 177, 215 |
| abstract_inverted_index.UWF | 66, 106, 250, 269 |
| abstract_inverted_index.and | 13, 19, 23, 47, 101, 134, 142, 168, 202, 222, 261, 302, 313 |
| abstract_inverted_index.are | 4 |
| abstract_inverted_index.can | 8 |
| abstract_inverted_index.did | 120 |
| abstract_inverted_index.for | 58, 129, 132, 136, 209, 278 |
| abstract_inverted_index.not | 17 |
| abstract_inverted_index.our | 232 |
| abstract_inverted_index.the | 55, 59, 89, 116, 223, 236, 256, 279, 286 |
| abstract_inverted_index.was | 124, 140, 149, 218, 228 |
| abstract_inverted_index.This | 42, 92, 271 |
| abstract_inverted_index.both | 152 |
| abstract_inverted_index.deep | 50, 83, 247 |
| abstract_inverted_index.dice | 163, 198 |
| abstract_inverted_index.into | 126 |
| abstract_inverted_index.lead | 9 |
| abstract_inverted_index.loss | 15 |
| abstract_inverted_index.not. | 121 |
| abstract_inverted_index.over | 160 |
| abstract_inverted_index.that | 7, 255 |
| abstract_inverted_index.this | 145, 234 |
| abstract_inverted_index.tool | 277 |
| abstract_inverted_index.with | 68, 285 |
| abstract_inverted_index.work | 293 |
| abstract_inverted_index.(PPV) | 227 |
| abstract_inverted_index.(UWF) | 33 |
| abstract_inverted_index.0.081 | 208 |
| abstract_inverted_index.8,083 | 99 |
| abstract_inverted_index.Model | 147 |
| abstract_inverted_index.Union | 161 |
| abstract_inverted_index.aimed | 44 |
| abstract_inverted_index.based | 53, 87 |
| abstract_inverted_index.cases | 100 |
| abstract_inverted_index.first | 237 |
| abstract_inverted_index.focus | 71, 295 |
| abstract_inverted_index.model | 52, 86, 139, 179, 258, 311 |
| abstract_inverted_index.score | 199, 206 |
| abstract_inverted_index.split | 125 |
| abstract_inverted_index.study | 43, 93, 238 |
| abstract_inverted_index.total | 103 |
| abstract_inverted_index.using | 29, 151, 246 |
| abstract_inverted_index.value | 226 |
| abstract_inverted_index.while | 115 |
| abstract_inverted_index.(IoU), | 162 |
| abstract_inverted_index.0.539, | 196 |
| abstract_inverted_index.0.635, | 188 |
| abstract_inverted_index.0.652, | 201 |
| abstract_inverted_index.0.742. | 229 |
| abstract_inverted_index.0.756, | 192 |
| abstract_inverted_index.0.885, | 221 |
| abstract_inverted_index.0.996, | 184 |
| abstract_inverted_index.33,907 | 118 |
| abstract_inverted_index.34,713 | 127 |
| abstract_inverted_index.34,867 | 105 |
| abstract_inverted_index.Future | 292 |
| abstract_inverted_index.PraNet | 56, 90 |
| abstract_inverted_index.across | 299 |
| abstract_inverted_index.breaks | 3, 28, 64, 245, 267 |
| abstract_inverted_index.cases. | 78 |
| abstract_inverted_index.early. | 21 |
| abstract_inverted_index.fundus | 32 |
| abstract_inverted_index.images | 34, 111, 119, 128 |
| abstract_inverted_index.offers | 273 |
| abstract_inverted_index.recall | 190 |
| abstract_inverted_index.remain | 35 |
| abstract_inverted_index.robust | 262 |
| abstract_inverted_index.score) | 167 |
| abstract_inverted_index.score, | 164 |
| abstract_inverted_index.should | 294 |
| abstract_inverted_index.these, | 109 |
| abstract_inverted_index.ultra- | 30 |
| abstract_inverted_index.vision | 14 |
| abstract_inverted_index.Methods | 79 |
| abstract_inverted_index.Results | 176 |
| abstract_inverted_index.Retinal | 2 |
| abstract_inverted_index.breaks, | 114, 284 |
| abstract_inverted_index.breaks. | 214 |
| abstract_inverted_index.dataset | 96, 123 |
| abstract_inverted_index.develop | 46 |
| abstract_inverted_index.enhance | 310 |
| abstract_inverted_index.further | 309 |
| abstract_inverted_index.images, | 67 |
| abstract_inverted_index.images. | 107, 251, 270 |
| abstract_inverted_index.improve | 289 |
| abstract_inverted_index.lesions | 6 |
| abstract_inverted_index.metrics | 155, 171 |
| abstract_inverted_index.patient | 290 |
| abstract_inverted_index.precise | 24, 260, 280 |
| abstract_inverted_index.present | 240 |
| abstract_inverted_index.recall, | 158 |
| abstract_inverted_index.retinal | 11, 27, 63, 76, 113, 213, 244, 266, 283 |
| abstract_inverted_index.trained | 141 |
| abstract_inverted_index.treated | 20 |
| abstract_inverted_index.value). | 175 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.accuracy | 182 |
| abstract_inverted_index.accurate | 60 |
| abstract_inverted_index.achieved | 180 |
| abstract_inverted_index.approach | 272 |
| abstract_inverted_index.centroid | 165, 204 |
| abstract_inverted_index.critical | 5 |
| abstract_inverted_index.dataset. | 146 |
| abstract_inverted_index.detected | 18 |
| abstract_inverted_index.distance | 166, 205 |
| abstract_inverted_index.external | 297 |
| abstract_inverted_index.findings | 253 |
| abstract_inverted_index.learning | 51, 84, 248 |
| abstract_inverted_index.multiple | 300 |
| abstract_inverted_index.positive | 173, 224 |
| abstract_inverted_index.provides | 259 |
| abstract_inverted_index.testing. | 137 |
| abstract_inverted_index.utilized | 94 |
| abstract_inverted_index.validate | 48 |
| abstract_inverted_index.Automated | 22 |
| abstract_inverted_index.Objective | 41 |
| abstract_inverted_index.challenge | 38 |
| abstract_inverted_index.contained | 112 |
| abstract_inverted_index.detection | 170, 211 |
| abstract_inverted_index.developed | 81 |
| abstract_inverted_index.evaluated | 150 |
| abstract_inverted_index.outcomes. | 291 |
| abstract_inverted_index.potential | 287 |
| abstract_inverted_index.precision | 186 |
| abstract_inverted_index.remaining | 117 |
| abstract_inverted_index.training, | 130 |
| abstract_inverted_index.validated | 143 |
| abstract_inverted_index.widefield | 31 |
| abstract_inverted_index.(accuracy, | 156 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.additional | 305 |
| abstract_inverted_index.annotation | 306 |
| abstract_inverted_index.applicable | 276 |
| abstract_inverted_index.calculated | 219 |
| abstract_inverted_index.clinically | 275 |
| abstract_inverted_index.consisting | 97 |
| abstract_inverted_index.detachment | 12 |
| abstract_inverted_index.image-wise | 153 |
| abstract_inverted_index.knowledge, | 233 |
| abstract_inverted_index.particular | 70 |
| abstract_inverted_index.precision, | 157 |
| abstract_inverted_index.predictive | 174, 225 |
| abstract_inverted_index.strategies | 307 |
| abstract_inverted_index.validation | 298 |
| abstract_inverted_index.Conclusions | 230 |
| abstract_inverted_index.delineation | 25, 61, 281 |
| abstract_inverted_index.demonstrate | 254 |
| abstract_inverted_index.integration | 303 |
| abstract_inverted_index.lesion-wise | 169, 216 |
| abstract_inverted_index.performance | 74, 148, 312 |
| abstract_inverted_index.pixel-level | 210, 241, 263 |
| abstract_inverted_index.sensitivity | 217 |
| abstract_inverted_index.significant | 37 |
| abstract_inverted_index.validation, | 133 |
| abstract_inverted_index.Intersection | 159 |
| abstract_inverted_index.PraNet-based | 178, 257 |
| abstract_inverted_index.architecture | 57 |
| abstract_inverted_index.institutions | 301 |
| abstract_inverted_index.localization | 242 |
| abstract_inverted_index.segmentation | 73, 85, 154, 264 |
| abstract_inverted_index.(sensitivity, | 172 |
| abstract_inverted_index.architecture. | 91 |
| abstract_inverted_index.ophthalmology. | 40 |
| abstract_inverted_index.break–positive | 77 |
| abstract_inverted_index.generalizability. | 314 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5032313766 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I146500386 |
| citation_normalized_percentile.value | 0.43421182 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |