Denoising Diffusion Models for Anomaly Localization in Medical Images Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.23834
This chapter explores anomaly localization in medical images using denoising diffusion models. After providing a brief methodological background of these models, including their application to image reconstruction and their conditioning using guidance mechanisms, we provide an overview of available datasets and evaluation metrics suitable for their application to anomaly localization in medical images. In this context, we discuss supervision schemes ranging from fully supervised segmentation to semi-supervised, weakly supervised, self-supervised, and unsupervised methods, and provide insights into the effectiveness and limitations of these approaches. Furthermore, we highlight open challenges in anomaly localization, including detection bias, domain shift, computational cost, and model interpretability. Our goal is to provide an overview of the current state of the art in the field, outline research gaps, and highlight the potential of diffusion models for robust anomaly localization in medical images.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.23834
- https://arxiv.org/pdf/2410.23834
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404347182
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404347182Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.23834Digital Object Identifier
- Title
-
Denoising Diffusion Models for Anomaly Localization in Medical ImagesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-31Full publication date if available
- Authors
-
Cosmin I. Bercea, Philippe C. Cattin, Julia A. Schnabel, Julia WollebList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.23834Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.23834Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.23834Direct OA link when available
- Concepts
-
Image denoising, Noise reduction, Diffusion, Anomaly (physics), Artificial intelligence, Anomaly detection, Computer science, Computer vision, Pattern recognition (psychology), Statistical physics, Physics, Condensed matter physics, ThermodynamicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404347182 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.23834 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.23834 |
| ids.openalex | https://openalex.org/W4404347182 |
| fwci | |
| type | preprint |
| title | Denoising Diffusion Models for Anomaly Localization in Medical Images |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9150999784469604 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2983327147 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6841750144958496 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[0].display_name | Image denoising |
| concepts[1].id | https://openalex.org/C163294075 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6205227971076965 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[1].display_name | Noise reduction |
| concepts[2].id | https://openalex.org/C69357855 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5713523030281067 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q163214 |
| concepts[2].display_name | Diffusion |
| concepts[3].id | https://openalex.org/C12997251 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5660911202430725 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q567560 |
| concepts[3].display_name | Anomaly (physics) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.46553221344947815 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C739882 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4376075565814972 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[5].display_name | Anomaly detection |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3662394881248474 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3535565733909607 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.33176153898239136 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C121864883 |
| concepts[9].level | 1 |
| concepts[9].score | 0.32275086641311646 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[9].display_name | Statistical physics |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.17122715711593628 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C26873012 |
| concepts[11].level | 1 |
| concepts[11].score | 0.06228676438331604 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q214781 |
| concepts[11].display_name | Condensed matter physics |
| concepts[12].id | https://openalex.org/C97355855 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[12].display_name | Thermodynamics |
| keywords[0].id | https://openalex.org/keywords/image-denoising |
| keywords[0].score | 0.6841750144958496 |
| keywords[0].display_name | Image denoising |
| keywords[1].id | https://openalex.org/keywords/noise-reduction |
| keywords[1].score | 0.6205227971076965 |
| keywords[1].display_name | Noise reduction |
| keywords[2].id | https://openalex.org/keywords/diffusion |
| keywords[2].score | 0.5713523030281067 |
| keywords[2].display_name | Diffusion |
| keywords[3].id | https://openalex.org/keywords/anomaly |
| keywords[3].score | 0.5660911202430725 |
| keywords[3].display_name | Anomaly (physics) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.46553221344947815 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/anomaly-detection |
| keywords[5].score | 0.4376075565814972 |
| keywords[5].display_name | Anomaly detection |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.3662394881248474 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.3535565733909607 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.33176153898239136 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/statistical-physics |
| keywords[9].score | 0.32275086641311646 |
| keywords[9].display_name | Statistical physics |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.17122715711593628 |
| keywords[10].display_name | Physics |
| keywords[11].id | https://openalex.org/keywords/condensed-matter-physics |
| keywords[11].score | 0.06228676438331604 |
| keywords[11].display_name | Condensed matter physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.23834 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.23834 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.23834 |
| locations[1].id | doi:10.48550/arxiv.2410.23834 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.23834 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5086799838 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2628-2766 |
| authorships[0].author.display_name | Cosmin I. Bercea |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bercea, Cosmin I. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5048965835 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8785-2713 |
| authorships[1].author.display_name | Philippe C. Cattin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Cattin, Philippe C. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5019012882 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6107-3009 |
| authorships[2].author.display_name | Julia A. Schnabel |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Schnabel, Julia A. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5033937723 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4087-5920 |
| authorships[3].author.display_name | Julia Wolleb |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Wolleb, Julia |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.23834 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Denoising Diffusion Models for Anomaly Localization in Medical Images |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9150999784469604 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W2806741695, https://openalex.org/W4290647774, https://openalex.org/W3189286258, https://openalex.org/W3207797160, https://openalex.org/W3210364259, https://openalex.org/W4300558037, https://openalex.org/W2667207928, https://openalex.org/W2912112202, https://openalex.org/W4377864969, https://openalex.org/W3120251014 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.23834 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.23834 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.23834 |
| primary_location.id | pmh:oai:arXiv.org:2410.23834 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.23834 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.23834 |
| publication_date | 2024-10-31 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 14 |
| abstract_inverted_index.In | 53 |
| abstract_inverted_index.an | 35, 107 |
| abstract_inverted_index.in | 5, 50, 89, 116, 133 |
| abstract_inverted_index.is | 104 |
| abstract_inverted_index.of | 18, 37, 81, 109, 113, 126 |
| abstract_inverted_index.to | 24, 47, 65, 105 |
| abstract_inverted_index.we | 33, 56, 85 |
| abstract_inverted_index.Our | 102 |
| abstract_inverted_index.and | 27, 40, 70, 73, 79, 99, 122 |
| abstract_inverted_index.art | 115 |
| abstract_inverted_index.for | 44, 129 |
| abstract_inverted_index.the | 77, 110, 114, 117, 124 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.from | 61 |
| abstract_inverted_index.goal | 103 |
| abstract_inverted_index.into | 76 |
| abstract_inverted_index.open | 87 |
| abstract_inverted_index.this | 54 |
| abstract_inverted_index.After | 12 |
| abstract_inverted_index.bias, | 94 |
| abstract_inverted_index.brief | 15 |
| abstract_inverted_index.cost, | 98 |
| abstract_inverted_index.fully | 62 |
| abstract_inverted_index.gaps, | 121 |
| abstract_inverted_index.image | 25 |
| abstract_inverted_index.model | 100 |
| abstract_inverted_index.state | 112 |
| abstract_inverted_index.their | 22, 28, 45 |
| abstract_inverted_index.these | 19, 82 |
| abstract_inverted_index.using | 8, 30 |
| abstract_inverted_index.domain | 95 |
| abstract_inverted_index.field, | 118 |
| abstract_inverted_index.images | 7 |
| abstract_inverted_index.models | 128 |
| abstract_inverted_index.robust | 130 |
| abstract_inverted_index.shift, | 96 |
| abstract_inverted_index.weakly | 67 |
| abstract_inverted_index.anomaly | 3, 48, 90, 131 |
| abstract_inverted_index.chapter | 1 |
| abstract_inverted_index.current | 111 |
| abstract_inverted_index.discuss | 57 |
| abstract_inverted_index.images. | 52, 135 |
| abstract_inverted_index.medical | 6, 51, 134 |
| abstract_inverted_index.metrics | 42 |
| abstract_inverted_index.models, | 20 |
| abstract_inverted_index.models. | 11 |
| abstract_inverted_index.outline | 119 |
| abstract_inverted_index.provide | 34, 74, 106 |
| abstract_inverted_index.ranging | 60 |
| abstract_inverted_index.schemes | 59 |
| abstract_inverted_index.context, | 55 |
| abstract_inverted_index.datasets | 39 |
| abstract_inverted_index.explores | 2 |
| abstract_inverted_index.guidance | 31 |
| abstract_inverted_index.insights | 75 |
| abstract_inverted_index.methods, | 72 |
| abstract_inverted_index.overview | 36, 108 |
| abstract_inverted_index.research | 120 |
| abstract_inverted_index.suitable | 43 |
| abstract_inverted_index.available | 38 |
| abstract_inverted_index.denoising | 9 |
| abstract_inverted_index.detection | 93 |
| abstract_inverted_index.diffusion | 10, 127 |
| abstract_inverted_index.highlight | 86, 123 |
| abstract_inverted_index.including | 21, 92 |
| abstract_inverted_index.potential | 125 |
| abstract_inverted_index.providing | 13 |
| abstract_inverted_index.background | 17 |
| abstract_inverted_index.challenges | 88 |
| abstract_inverted_index.evaluation | 41 |
| abstract_inverted_index.supervised | 63 |
| abstract_inverted_index.application | 23, 46 |
| abstract_inverted_index.approaches. | 83 |
| abstract_inverted_index.limitations | 80 |
| abstract_inverted_index.mechanisms, | 32 |
| abstract_inverted_index.supervised, | 68 |
| abstract_inverted_index.supervision | 58 |
| abstract_inverted_index.Furthermore, | 84 |
| abstract_inverted_index.conditioning | 29 |
| abstract_inverted_index.localization | 4, 49, 132 |
| abstract_inverted_index.segmentation | 64 |
| abstract_inverted_index.unsupervised | 71 |
| abstract_inverted_index.computational | 97 |
| abstract_inverted_index.effectiveness | 78 |
| abstract_inverted_index.localization, | 91 |
| abstract_inverted_index.methodological | 16 |
| abstract_inverted_index.reconstruction | 26 |
| abstract_inverted_index.self-supervised, | 69 |
| abstract_inverted_index.semi-supervised, | 66 |
| abstract_inverted_index.interpretability. | 101 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |