Denoising Heterogeneous Knowledge Distillation Network for Unsupervised Industrial Image Anomaly Detection Article Swipe
Yuan Li
,
Yang Song
,
Shengpeng Li
,
Qingyang Ding
,
Qi Shen
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5278821
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5278821
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.2139/ssrn.5278821
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410957440
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410957440Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.5278821Digital Object Identifier
- Title
-
Denoising Heterogeneous Knowledge Distillation Network for Unsupervised Industrial Image Anomaly DetectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Yuan Li, Yang Song, Shengpeng Li, Qingyang Ding, Qi ShenList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.5278821Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2139/ssrn.5278821Direct OA link when available
- Concepts
-
Anomaly detection, Distillation, Artificial intelligence, Pattern recognition (psychology), Anomaly (physics), Image denoising, Image (mathematics), Computer science, Noise reduction, Machine learning, Chromatography, Chemistry, Condensed matter physics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410957440 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.5278821 |
| ids.doi | https://doi.org/10.2139/ssrn.5278821 |
| ids.openalex | https://openalex.org/W4410957440 |
| fwci | 0.0 |
| type | preprint |
| title | Denoising Heterogeneous Knowledge Distillation Network for Unsupervised Industrial Image Anomaly Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9968000054359436 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C739882 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7524213790893555 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[0].display_name | Anomaly detection |
| concepts[1].id | https://openalex.org/C204030448 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6024138331413269 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q101017 |
| concepts[1].display_name | Distillation |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5516100525856018 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5020122528076172 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C12997251 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4780845642089844 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q567560 |
| concepts[4].display_name | Anomaly (physics) |
| concepts[5].id | https://openalex.org/C2983327147 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4708663523197174 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[5].display_name | Image denoising |
| concepts[6].id | https://openalex.org/C115961682 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4693364202976227 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[6].display_name | Image (mathematics) |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.46175336837768555 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C163294075 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4545350670814514 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[8].display_name | Noise reduction |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.34507855772972107 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C43617362 |
| concepts[10].level | 1 |
| concepts[10].score | 0.15507906675338745 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[10].display_name | Chromatography |
| concepts[11].id | https://openalex.org/C185592680 |
| concepts[11].level | 0 |
| concepts[11].score | 0.13226792216300964 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[11].display_name | Chemistry |
| concepts[12].id | https://openalex.org/C26873012 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q214781 |
| concepts[12].display_name | Condensed matter physics |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/anomaly-detection |
| keywords[0].score | 0.7524213790893555 |
| keywords[0].display_name | Anomaly detection |
| keywords[1].id | https://openalex.org/keywords/distillation |
| keywords[1].score | 0.6024138331413269 |
| keywords[1].display_name | Distillation |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5516100525856018 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.5020122528076172 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/anomaly |
| keywords[4].score | 0.4780845642089844 |
| keywords[4].display_name | Anomaly (physics) |
| keywords[5].id | https://openalex.org/keywords/image-denoising |
| keywords[5].score | 0.4708663523197174 |
| keywords[5].display_name | Image denoising |
| keywords[6].id | https://openalex.org/keywords/image |
| keywords[6].score | 0.4693364202976227 |
| keywords[6].display_name | Image (mathematics) |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.46175336837768555 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/noise-reduction |
| keywords[8].score | 0.4545350670814514 |
| keywords[8].display_name | Noise reduction |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.34507855772972107 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/chromatography |
| keywords[10].score | 0.15507906675338745 |
| keywords[10].display_name | Chromatography |
| keywords[11].id | https://openalex.org/keywords/chemistry |
| keywords[11].score | 0.13226792216300964 |
| keywords[11].display_name | Chemistry |
| language | en |
| locations[0].id | doi:10.2139/ssrn.5278821 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2139/ssrn.5278821 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101903323 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1500-8884 |
| authorships[0].author.display_name | Yuan Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuan Li |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5041567418 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1283-1672 |
| authorships[1].author.display_name | Yang Song |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yang Song |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5009676248 |
| authorships[2].author.orcid | https://orcid.org/0009-0004-0989-9793 |
| authorships[2].author.display_name | Shengpeng Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shengpeng Li |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5026472040 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0771-7779 |
| authorships[3].author.display_name | Qingyang Ding |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Qingyang Ding |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5017427697 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2817-5673 |
| authorships[4].author.display_name | Qi Shen |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Qi Shen |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2139/ssrn.5278821 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Denoising Heterogeneous Knowledge Distillation Network for Unsupervised Industrial Image Anomaly Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9968000054359436 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W2806741695, https://openalex.org/W4290647774, https://openalex.org/W3189286258, https://openalex.org/W3207797160, https://openalex.org/W3210364259, https://openalex.org/W4300558037, https://openalex.org/W2667207928, https://openalex.org/W2912112202, https://openalex.org/W4377864969, https://openalex.org/W3120251014 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.5278821 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2139/ssrn.5278821 |
| primary_location.id | doi:10.2139/ssrn.5278821 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2139/ssrn.5278821 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.08645932 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |