Denoising very low-field magnetic resonance images using native noise modeling Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3389/fnimg.2025.1501801
Low-field MRI is gaining interest, especially in low-resource settings, due to its low cost, portability, small footprint, and low power consumption. However, it suffers from significant noise, limiting its clinical utility. This study introduces native noise denoising (NND), which leverages the inherent noise characteristics of the acquired low-field data. By obtaining the noise characteristics from corner patches of low-field images, we iteratively added similar noise to high-field images to create a paired noisy-clean dataset. A U-Net based denoising autoencoder was trained on this dataset and evaluated on three low-field datasets: the M4Raw dataset (0.3T), in vivo brain MRI (0.05T), and phantom images (0.05T). The NND approach demonstrated improvements in signal-to-noise ratio (SNR) of 32.76%, 19.02%, and 8.16% across the M4Raw, in vivo and phantom datasets, respectively. Qualitative assessments, including difference maps, line intensity plots, and effective receptive fields, suggested that NND preserves structural details and edges compared to random noise denoising (RND), indicating potential enhancements in visual quality. This substantial improvement in low-field imaging quality addresses the fundamental challenge of diagnostic confidence in resource-constrained settings. By mitigating the primary technical limitation of these systems, our approach expands the clinical utility of low-field MRI scanners, potentially facilitating broader access to diagnostic imaging across resource-limited healthcare environments globally.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fnimg.2025.1501801
- https://www.frontiersin.org/journals/neuroimaging/articles/10.3389/fnimg.2025.1501801/pdf
- OA Status
- diamond
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410133259
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410133259Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fnimg.2025.1501801Digital Object Identifier
- Title
-
Denoising very low-field magnetic resonance images using native noise modelingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-06Full publication date if available
- Authors
-
Tonny Ssentamu, Alvin Kimbowa, Ronald Omoding, Edgar Atamba, Pius K Mukwaya, George W Jjuuko, Sairam GeethanathList of authors in order
- Landing page
-
https://doi.org/10.3389/fnimg.2025.1501801Publisher landing page
- PDF URL
-
https://www.frontiersin.org/journals/neuroimaging/articles/10.3389/fnimg.2025.1501801/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/journals/neuroimaging/articles/10.3389/fnimg.2025.1501801/pdfDirect OA link when available
- Concepts
-
Noise (video), Computer science, Noise reduction, Imaging phantom, Artificial intelligence, Field (mathematics), Signal-to-noise ratio (imaging), Software portability, Image quality, Computer vision, Pattern recognition (psychology), Mathematics, Image (mathematics), Physics, Optics, Telecommunications, Programming language, Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410133259 |
|---|---|
| doi | https://doi.org/10.3389/fnimg.2025.1501801 |
| ids.doi | https://doi.org/10.3389/fnimg.2025.1501801 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40395481 |
| ids.openalex | https://openalex.org/W4410133259 |
| fwci | 0.0 |
| type | article |
| title | Denoising very low-field magnetic resonance images using native noise modeling |
| biblio.issue | |
| biblio.volume | 4 |
| biblio.last_page | 1501801 |
| biblio.first_page | 1501801 |
| topics[0].id | https://openalex.org/T10378 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Advanced MRI Techniques and Applications |
| topics[1].id | https://openalex.org/T10688 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9969000220298767 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Signal Denoising Methods |
| topics[2].id | https://openalex.org/T10522 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9941999912261963 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Medical Imaging Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C99498987 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6939742565155029 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[0].display_name | Noise (video) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6651830673217773 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C163294075 |
| concepts[2].level | 2 |
| concepts[2].score | 0.642723798751831 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[2].display_name | Noise reduction |
| concepts[3].id | https://openalex.org/C104293457 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6374593377113342 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q28324852 |
| concepts[3].display_name | Imaging phantom |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5751760601997375 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C9652623 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47936776280403137 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[5].display_name | Field (mathematics) |
| concepts[6].id | https://openalex.org/C13944312 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43230095505714417 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7512748 |
| concepts[6].display_name | Signal-to-noise ratio (imaging) |
| concepts[7].id | https://openalex.org/C63000827 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4291805326938629 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3080428 |
| concepts[7].display_name | Software portability |
| concepts[8].id | https://openalex.org/C55020928 |
| concepts[8].level | 3 |
| concepts[8].score | 0.42293378710746765 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3813865 |
| concepts[8].display_name | Image quality |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3276893198490143 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3268897533416748 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.16819453239440918 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.13453641533851624 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.11860042810440063 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C120665830 |
| concepts[14].level | 1 |
| concepts[14].score | 0.09211203455924988 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[14].display_name | Optics |
| concepts[15].id | https://openalex.org/C76155785 |
| concepts[15].level | 1 |
| concepts[15].score | 0.09016621112823486 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[15].display_name | Telecommunications |
| concepts[16].id | https://openalex.org/C199360897 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[16].display_name | Programming language |
| concepts[17].id | https://openalex.org/C202444582 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[17].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/noise |
| keywords[0].score | 0.6939742565155029 |
| keywords[0].display_name | Noise (video) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6651830673217773 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/noise-reduction |
| keywords[2].score | 0.642723798751831 |
| keywords[2].display_name | Noise reduction |
| keywords[3].id | https://openalex.org/keywords/imaging-phantom |
| keywords[3].score | 0.6374593377113342 |
| keywords[3].display_name | Imaging phantom |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5751760601997375 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/field |
| keywords[5].score | 0.47936776280403137 |
| keywords[5].display_name | Field (mathematics) |
| keywords[6].id | https://openalex.org/keywords/signal-to-noise-ratio |
| keywords[6].score | 0.43230095505714417 |
| keywords[6].display_name | Signal-to-noise ratio (imaging) |
| keywords[7].id | https://openalex.org/keywords/software-portability |
| keywords[7].score | 0.4291805326938629 |
| keywords[7].display_name | Software portability |
| keywords[8].id | https://openalex.org/keywords/image-quality |
| keywords[8].score | 0.42293378710746765 |
| keywords[8].display_name | Image quality |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.3276893198490143 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.3268897533416748 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.16819453239440918 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.13453641533851624 |
| keywords[12].display_name | Image (mathematics) |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.11860042810440063 |
| keywords[13].display_name | Physics |
| keywords[14].id | https://openalex.org/keywords/optics |
| keywords[14].score | 0.09211203455924988 |
| keywords[14].display_name | Optics |
| keywords[15].id | https://openalex.org/keywords/telecommunications |
| keywords[15].score | 0.09016621112823486 |
| keywords[15].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.3389/fnimg.2025.1501801 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387278986 |
| locations[0].source.issn | 2813-1193 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2813-1193 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Neuroimaging |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/journals/neuroimaging/articles/10.3389/fnimg.2025.1501801/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Neuroimaging |
| locations[0].landing_page_url | https://doi.org/10.3389/fnimg.2025.1501801 |
| locations[1].id | pmid:40395481 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in neuroimaging |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40395481 |
| locations[2].id | pmh:oai:doaj.org/article:acdbb032ba68498a8e967eb5e1e8f24e |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].source.host_organization_lineage | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Frontiers in Neuroimaging, Vol 4 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/acdbb032ba68498a8e967eb5e1e8f24e |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12089061 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Front Neuroimaging |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12089061 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5114817045 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Tonny Ssentamu |
| authorships[0].countries | GB, UG |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I183935753 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Immunology and Microbial Sciences, King's College London, London, United Kingdom. |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I72227227 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Physiology, Makerere University, Kampala, Uganda. |
| authorships[0].institutions[0].id | https://openalex.org/I183935753 |
| authorships[0].institutions[0].ror | https://ror.org/0220mzb33 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | King's College London |
| authorships[0].institutions[1].id | https://openalex.org/I72227227 |
| authorships[0].institutions[1].ror | https://ror.org/03dmz0111 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I72227227 |
| authorships[0].institutions[1].country_code | UG |
| authorships[0].institutions[1].display_name | Makerere University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tonny Ssentamu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Physiology, Makerere University, Kampala, Uganda., School of Immunology and Microbial Sciences, King's College London, London, United Kingdom. |
| authorships[1].author.id | https://openalex.org/A5058286824 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7588-5902 |
| authorships[1].author.display_name | Alvin Kimbowa |
| authorships[1].countries | CA, UG |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I141945490 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada. |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I72227227 |
| authorships[1].affiliations[1].raw_affiliation_string | Department Electrical and Computer Engineering, Makerere University, Kampala, Uganda. |
| authorships[1].institutions[0].id | https://openalex.org/I141945490 |
| authorships[1].institutions[0].ror | https://ror.org/03rmrcq20 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I141945490, https://openalex.org/I4210128534, https://openalex.org/I4210135497, https://openalex.org/I4387154919 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | University of British Columbia |
| authorships[1].institutions[1].id | https://openalex.org/I72227227 |
| authorships[1].institutions[1].ror | https://ror.org/03dmz0111 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I72227227 |
| authorships[1].institutions[1].country_code | UG |
| authorships[1].institutions[1].display_name | Makerere University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Alvin Kimbowa |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department Electrical and Computer Engineering, Makerere University, Kampala, Uganda., School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada. |
| authorships[2].author.id | https://openalex.org/A5114817046 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Ronald Omoding |
| authorships[2].countries | UG |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I72227227 |
| authorships[2].affiliations[0].raw_affiliation_string | Department Electrical and Computer Engineering, Makerere University, Kampala, Uganda. |
| authorships[2].institutions[0].id | https://openalex.org/I72227227 |
| authorships[2].institutions[0].ror | https://ror.org/03dmz0111 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I72227227 |
| authorships[2].institutions[0].country_code | UG |
| authorships[2].institutions[0].display_name | Makerere University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ronald Omoding |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department Electrical and Computer Engineering, Makerere University, Kampala, Uganda. |
| authorships[3].author.id | https://openalex.org/A5117454092 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Edgar Atamba |
| authorships[3].countries | IT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I122534668 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Information Engineering, Università Politecnica Delle Marche, Ancona, Italy. |
| authorships[3].institutions[0].id | https://openalex.org/I122534668 |
| authorships[3].institutions[0].ror | https://ror.org/00x69rs40 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I122534668 |
| authorships[3].institutions[0].country_code | IT |
| authorships[3].institutions[0].display_name | Marche Polytechnic University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Edgar Atamba |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Information Engineering, Università Politecnica Delle Marche, Ancona, Italy. |
| authorships[4].author.id | https://openalex.org/A5114817047 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Pius K Mukwaya |
| authorships[4].countries | IT |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I108290504 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Information Engineering, University of Pisa (UNIPI), Pisa, Italy. |
| authorships[4].institutions[0].id | https://openalex.org/I108290504 |
| authorships[4].institutions[0].ror | https://ror.org/03ad39j10 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I108290504 |
| authorships[4].institutions[0].country_code | IT |
| authorships[4].institutions[0].display_name | University of Pisa |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Pius K Mukwaya |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Information Engineering, University of Pisa (UNIPI), Pisa, Italy. |
| authorships[5].author.id | https://openalex.org/A5117454093 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | George W Jjuuko |
| authorships[5].countries | UG |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I72227227 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Physiology, Makerere University, Kampala, Uganda. |
| authorships[5].institutions[0].id | https://openalex.org/I72227227 |
| authorships[5].institutions[0].ror | https://ror.org/03dmz0111 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I72227227 |
| authorships[5].institutions[0].country_code | UG |
| authorships[5].institutions[0].display_name | Makerere University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | George W Jjuuko |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Physiology, Makerere University, Kampala, Uganda. |
| authorships[6].author.id | https://openalex.org/A5005489876 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3776-4114 |
| authorships[6].author.display_name | Sairam Geethanath |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I145311948, https://openalex.org/I2799853436 |
| authorships[6].affiliations[0].raw_affiliation_string | Accessible MR Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, United States. |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I98704320 |
| authorships[6].affiliations[1].raw_affiliation_string | Icahn School of Medicine at Mount Sinai, New York, NY, United States. |
| authorships[6].institutions[0].id | https://openalex.org/I98704320 |
| authorships[6].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[6].institutions[1].id | https://openalex.org/I2799853436 |
| authorships[6].institutions[1].ror | https://ror.org/037zgn354 |
| authorships[6].institutions[1].type | healthcare |
| authorships[6].institutions[1].lineage | https://openalex.org/I2799853436 |
| authorships[6].institutions[1].country_code | US |
| authorships[6].institutions[1].display_name | Johns Hopkins Medicine |
| authorships[6].institutions[2].id | https://openalex.org/I145311948 |
| authorships[6].institutions[2].ror | https://ror.org/00za53h95 |
| authorships[6].institutions[2].type | education |
| authorships[6].institutions[2].lineage | https://openalex.org/I145311948 |
| authorships[6].institutions[2].country_code | US |
| authorships[6].institutions[2].display_name | Johns Hopkins University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Sairam Geethanath |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Accessible MR Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, United States., Icahn School of Medicine at Mount Sinai, New York, NY, United States. |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/journals/neuroimaging/articles/10.3389/fnimg.2025.1501801/pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Denoising very low-field magnetic resonance images using native noise modeling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10378 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Advanced MRI Techniques and Applications |
| related_works | https://openalex.org/W2015071354, https://openalex.org/W2062195871, https://openalex.org/W2073031339, https://openalex.org/W4391915433, https://openalex.org/W2144778520, https://openalex.org/W2061271245, https://openalex.org/W2365285804, https://openalex.org/W2620851791, https://openalex.org/W4385545089, https://openalex.org/W4401575680 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/fnimg.2025.1501801 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387278986 |
| best_oa_location.source.issn | 2813-1193 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2813-1193 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Neuroimaging |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/journals/neuroimaging/articles/10.3389/fnimg.2025.1501801/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Neuroimaging |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fnimg.2025.1501801 |
| primary_location.id | doi:10.3389/fnimg.2025.1501801 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387278986 |
| primary_location.source.issn | 2813-1193 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2813-1193 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Neuroimaging |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/journals/neuroimaging/articles/10.3389/fnimg.2025.1501801/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Neuroimaging |
| primary_location.landing_page_url | https://doi.org/10.3389/fnimg.2025.1501801 |
| publication_date | 2025-05-06 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W6871437655, https://openalex.org/W4366283752, https://openalex.org/W4306786679, https://openalex.org/W4296268709, https://openalex.org/W4404577284, https://openalex.org/W4229658977, https://openalex.org/W6803850778, https://openalex.org/W2085770918, https://openalex.org/W4388498502, https://openalex.org/W2910728592, https://openalex.org/W2059784307, https://openalex.org/W2064076387, https://openalex.org/W2964121744, https://openalex.org/W3116694041, https://openalex.org/W4205976786, https://openalex.org/W2617669016, https://openalex.org/W4376133665, https://openalex.org/W2911060328, https://openalex.org/W1901129140, https://openalex.org/W2747857845, https://openalex.org/W6674369900, https://openalex.org/W2527085609, https://openalex.org/W4384389672, https://openalex.org/W2508457857, https://openalex.org/W4301086862, https://openalex.org/W4401575809, https://openalex.org/W4231258871 |
| referenced_works_count | 27 |
| abstract_inverted_index.A | 74 |
| abstract_inverted_index.a | 70 |
| abstract_inverted_index.By | 49, 175 |
| abstract_inverted_index.in | 6, 94, 108, 120, 155, 161, 172 |
| abstract_inverted_index.is | 2 |
| abstract_inverted_index.it | 22 |
| abstract_inverted_index.of | 44, 57, 112, 169, 181, 190 |
| abstract_inverted_index.on | 81, 86 |
| abstract_inverted_index.to | 10, 65, 68, 147, 198 |
| abstract_inverted_index.we | 60 |
| abstract_inverted_index.MRI | 1, 97, 192 |
| abstract_inverted_index.NND | 104, 140 |
| abstract_inverted_index.The | 103 |
| abstract_inverted_index.and | 17, 84, 99, 115, 122, 134, 144 |
| abstract_inverted_index.due | 9 |
| abstract_inverted_index.its | 11, 28 |
| abstract_inverted_index.low | 12, 18 |
| abstract_inverted_index.our | 184 |
| abstract_inverted_index.the | 40, 45, 51, 90, 118, 166, 177, 187 |
| abstract_inverted_index.was | 79 |
| abstract_inverted_index.This | 31, 158 |
| abstract_inverted_index.from | 24, 54 |
| abstract_inverted_index.line | 131 |
| abstract_inverted_index.that | 139 |
| abstract_inverted_index.this | 82 |
| abstract_inverted_index.vivo | 95, 121 |
| abstract_inverted_index.(SNR) | 111 |
| abstract_inverted_index.8.16% | 116 |
| abstract_inverted_index.M4Raw | 91 |
| abstract_inverted_index.U-Net | 75 |
| abstract_inverted_index.added | 62 |
| abstract_inverted_index.based | 76 |
| abstract_inverted_index.brain | 96 |
| abstract_inverted_index.cost, | 13 |
| abstract_inverted_index.data. | 48 |
| abstract_inverted_index.edges | 145 |
| abstract_inverted_index.maps, | 130 |
| abstract_inverted_index.noise | 35, 42, 52, 64, 149 |
| abstract_inverted_index.power | 19 |
| abstract_inverted_index.ratio | 110 |
| abstract_inverted_index.small | 15 |
| abstract_inverted_index.study | 32 |
| abstract_inverted_index.these | 182 |
| abstract_inverted_index.three | 87 |
| abstract_inverted_index.which | 38 |
| abstract_inverted_index.(NND), | 37 |
| abstract_inverted_index.(RND), | 151 |
| abstract_inverted_index.M4Raw, | 119 |
| abstract_inverted_index.access | 197 |
| abstract_inverted_index.across | 117, 201 |
| abstract_inverted_index.corner | 55 |
| abstract_inverted_index.create | 69 |
| abstract_inverted_index.images | 67, 101 |
| abstract_inverted_index.native | 34 |
| abstract_inverted_index.noise, | 26 |
| abstract_inverted_index.paired | 71 |
| abstract_inverted_index.plots, | 133 |
| abstract_inverted_index.random | 148 |
| abstract_inverted_index.visual | 156 |
| abstract_inverted_index.(0.3T), | 93 |
| abstract_inverted_index.19.02%, | 114 |
| abstract_inverted_index.32.76%, | 113 |
| abstract_inverted_index.broader | 196 |
| abstract_inverted_index.dataset | 83, 92 |
| abstract_inverted_index.details | 143 |
| abstract_inverted_index.expands | 186 |
| abstract_inverted_index.fields, | 137 |
| abstract_inverted_index.gaining | 3 |
| abstract_inverted_index.images, | 59 |
| abstract_inverted_index.imaging | 163, 200 |
| abstract_inverted_index.patches | 56 |
| abstract_inverted_index.phantom | 100, 123 |
| abstract_inverted_index.primary | 178 |
| abstract_inverted_index.quality | 164 |
| abstract_inverted_index.similar | 63 |
| abstract_inverted_index.suffers | 23 |
| abstract_inverted_index.trained | 80 |
| abstract_inverted_index.utility | 189 |
| abstract_inverted_index.(0.05T), | 98 |
| abstract_inverted_index.(0.05T). | 102 |
| abstract_inverted_index.However, | 21 |
| abstract_inverted_index.acquired | 46 |
| abstract_inverted_index.approach | 105, 185 |
| abstract_inverted_index.clinical | 29, 188 |
| abstract_inverted_index.compared | 146 |
| abstract_inverted_index.dataset. | 73 |
| abstract_inverted_index.inherent | 41 |
| abstract_inverted_index.limiting | 27 |
| abstract_inverted_index.quality. | 157 |
| abstract_inverted_index.systems, | 183 |
| abstract_inverted_index.utility. | 30 |
| abstract_inverted_index.Low-field | 0 |
| abstract_inverted_index.addresses | 165 |
| abstract_inverted_index.challenge | 168 |
| abstract_inverted_index.datasets, | 124 |
| abstract_inverted_index.datasets: | 89 |
| abstract_inverted_index.denoising | 36, 77, 150 |
| abstract_inverted_index.effective | 135 |
| abstract_inverted_index.evaluated | 85 |
| abstract_inverted_index.globally. | 205 |
| abstract_inverted_index.including | 128 |
| abstract_inverted_index.intensity | 132 |
| abstract_inverted_index.interest, | 4 |
| abstract_inverted_index.leverages | 39 |
| abstract_inverted_index.low-field | 47, 58, 88, 162, 191 |
| abstract_inverted_index.obtaining | 50 |
| abstract_inverted_index.potential | 153 |
| abstract_inverted_index.preserves | 141 |
| abstract_inverted_index.receptive | 136 |
| abstract_inverted_index.scanners, | 193 |
| abstract_inverted_index.settings, | 8 |
| abstract_inverted_index.settings. | 174 |
| abstract_inverted_index.suggested | 138 |
| abstract_inverted_index.technical | 179 |
| abstract_inverted_index.confidence | 171 |
| abstract_inverted_index.diagnostic | 170, 199 |
| abstract_inverted_index.difference | 129 |
| abstract_inverted_index.especially | 5 |
| abstract_inverted_index.footprint, | 16 |
| abstract_inverted_index.healthcare | 203 |
| abstract_inverted_index.high-field | 66 |
| abstract_inverted_index.indicating | 152 |
| abstract_inverted_index.introduces | 33 |
| abstract_inverted_index.limitation | 180 |
| abstract_inverted_index.mitigating | 176 |
| abstract_inverted_index.structural | 142 |
| abstract_inverted_index.Qualitative | 126 |
| abstract_inverted_index.autoencoder | 78 |
| abstract_inverted_index.fundamental | 167 |
| abstract_inverted_index.improvement | 160 |
| abstract_inverted_index.iteratively | 61 |
| abstract_inverted_index.noisy-clean | 72 |
| abstract_inverted_index.potentially | 194 |
| abstract_inverted_index.significant | 25 |
| abstract_inverted_index.substantial | 159 |
| abstract_inverted_index.assessments, | 127 |
| abstract_inverted_index.consumption. | 20 |
| abstract_inverted_index.demonstrated | 106 |
| abstract_inverted_index.enhancements | 154 |
| abstract_inverted_index.environments | 204 |
| abstract_inverted_index.facilitating | 195 |
| abstract_inverted_index.improvements | 107 |
| abstract_inverted_index.low-resource | 7 |
| abstract_inverted_index.portability, | 14 |
| abstract_inverted_index.respectively. | 125 |
| abstract_inverted_index.characteristics | 43, 53 |
| abstract_inverted_index.signal-to-noise | 109 |
| abstract_inverted_index.resource-limited | 202 |
| abstract_inverted_index.resource-constrained | 173 |
| cited_by_percentile_year | |
| countries_distinct_count | 5 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.22437015 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |