Dense Convolutional Neural Network for Identification of Raman Spectra Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/s23177433
The rapid development of cloud computing and deep learning makes the intelligent modes of applications widespread in various fields. The identification of Raman spectra can be realized in the cloud, due to its powerful computing, abundant spectral databases and advanced algorithms. Thus, it can reduce the dependence on the performance of the terminal instruments. However, the complexity of the detection environment can cause great interferences, which might significantly decrease the identification accuracies of algorithms. In this paper, a deep learning algorithm based on the Dense network has been proposed to satisfy the realization of this vision. The proposed Dense convolutional neural network has a very deep structure of over 40 layers and plenty of parameters to adjust the weight of different wavebands. In the kernel Dense blocks part of the network, it has a feed-forward fashion of connection for each layer to every other layer. It can alleviate the gradient vanishing or explosion problems, strengthen feature propagations, encourage feature reuses and enhance training efficiency. The network’s special architecture mitigates noise interferences and ensures precise identification. The Dense network shows more accuracy and robustness compared to other CNN-based algorithms. We set up a database of 1600 Raman spectra consisting of 32 different types of liquid chemicals. They are detected using different postures as examples of interfered Raman spectra. In the 50 repeated training and testing sets, the Dense network can achieve a weighted accuracy of 99.99%. We have also tested the RRUFF database and the Dense network has a good performance. The proposed approach advances cloud-enabled Raman spectra identification, offering improved accuracy and adaptability for diverse identification tasks.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s23177433
- https://www.mdpi.com/1424-8220/23/17/7433/pdf?version=1692973592
- OA Status
- gold
- Cited By
- 10
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386223603
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386223603Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s23177433Digital Object Identifier
- Title
-
Dense Convolutional Neural Network for Identification of Raman SpectraWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-25Full publication date if available
- Authors
-
Wei Zhou, Ziheng Qian, Xinyuan Ni, Yujun Tang, Hanming Guo, Songlin ZhuangList of authors in order
- Landing page
-
https://doi.org/10.3390/s23177433Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/23/17/7433/pdf?version=1692973592Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/23/17/7433/pdf?version=1692973592Direct OA link when available
- Concepts
-
Convolutional neural network, Identification (biology), Raman spectroscopy, Artificial neural network, Artificial intelligence, Computer science, Pattern recognition (psychology), Physics, Optics, Biology, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 5, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386223603 |
|---|---|
| doi | https://doi.org/10.3390/s23177433 |
| ids.doi | https://doi.org/10.3390/s23177433 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37687890 |
| ids.openalex | https://openalex.org/W4386223603 |
| fwci | 3.0785145 |
| type | article |
| title | Dense Convolutional Neural Network for Identification of Raman Spectra |
| biblio.issue | 17 |
| biblio.volume | 23 |
| biblio.last_page | 7433 |
| biblio.first_page | 7433 |
| grants[0].funder | https://openalex.org/F4320321885 |
| grants[0].award_id | 21010502900 |
| grants[0].funder_display_name | Science and Technology Commission of Shanghai Municipality |
| topics[0].id | https://openalex.org/T11324 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1304 |
| topics[0].subfield.display_name | Biophysics |
| topics[0].display_name | Spectroscopy Techniques in Biomedical and Chemical Research |
| topics[1].id | https://openalex.org/T10640 |
| topics[1].field.id | https://openalex.org/fields/16 |
| topics[1].field.display_name | Chemistry |
| topics[1].score | 0.9987999796867371 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1602 |
| topics[1].subfield.display_name | Analytical Chemistry |
| topics[1].display_name | Spectroscopy and Chemometric Analyses |
| topics[2].id | https://openalex.org/T10689 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9968000054359436 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Remote-Sensing Image Classification |
| funders[0].id | https://openalex.org/F4320321885 |
| funders[0].ror | https://ror.org/03kt66j61 |
| funders[0].display_name | Science and Technology Commission of Shanghai Municipality |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8059546947479248 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C116834253 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6609836220741272 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[1].display_name | Identification (biology) |
| concepts[2].id | https://openalex.org/C40003534 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6055523753166199 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q862228 |
| concepts[2].display_name | Raman spectroscopy |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.47807955741882324 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4399045407772064 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.423692524433136 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4021635055541992 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2541573941707611 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C120665830 |
| concepts[8].level | 1 |
| concepts[8].score | 0.15693065524101257 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[8].display_name | Optics |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.11471688747406006 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C59822182 |
| concepts[10].level | 1 |
| concepts[10].score | 0.06443879008293152 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[10].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.8059546947479248 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/identification |
| keywords[1].score | 0.6609836220741272 |
| keywords[1].display_name | Identification (biology) |
| keywords[2].id | https://openalex.org/keywords/raman-spectroscopy |
| keywords[2].score | 0.6055523753166199 |
| keywords[2].display_name | Raman spectroscopy |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.47807955741882324 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4399045407772064 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.423692524433136 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.4021635055541992 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.2541573941707611 |
| keywords[7].display_name | Physics |
| keywords[8].id | https://openalex.org/keywords/optics |
| keywords[8].score | 0.15693065524101257 |
| keywords[8].display_name | Optics |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.11471688747406006 |
| keywords[9].display_name | Biology |
| keywords[10].id | https://openalex.org/keywords/botany |
| keywords[10].score | 0.06443879008293152 |
| keywords[10].display_name | Botany |
| language | en |
| locations[0].id | doi:10.3390/s23177433 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/23/17/7433/pdf?version=1692973592 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s23177433 |
| locations[1].id | pmid:37687890 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37687890 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10490759 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10490759/pdf/sensors-23-07433.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors (Basel) |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10490759 |
| locations[3].id | pmh:oai:doaj.org/article:f2bb62cefa49446d96571dfe6b212f1d |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].source.host_organization_lineage | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors, Vol 23, Iss 17, p 7433 (2023) |
| locations[3].landing_page_url | https://doaj.org/article/f2bb62cefa49446d96571dfe6b212f1d |
| locations[4].id | pmh:oai:mdpi.com:/1424-8220/23/17/7433/ |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400947 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | MDPI (MDPI AG) |
| locations[4].source.host_organization | https://openalex.org/I4210097602 |
| locations[4].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors; Volume 23; Issue 17; Pages: 7433 |
| locations[4].landing_page_url | https://dx.doi.org/10.3390/s23177433 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5084173892 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5257-3885 |
| authorships[0].author.display_name | Wei Zhou |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I148128674 |
| authorships[0].affiliations[0].raw_affiliation_string | Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China |
| authorships[0].institutions[0].id | https://openalex.org/I148128674 |
| authorships[0].institutions[0].ror | https://ror.org/00ay9v204 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I148128674 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | University of Shanghai for Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wei Zhou |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China |
| authorships[1].author.id | https://openalex.org/A5086662952 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4153-8491 |
| authorships[1].author.display_name | Ziheng Qian |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I148128674 |
| authorships[1].affiliations[0].raw_affiliation_string | Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China |
| authorships[1].institutions[0].id | https://openalex.org/I148128674 |
| authorships[1].institutions[0].ror | https://ror.org/00ay9v204 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I148128674 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | University of Shanghai for Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ziheng Qian |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China |
| authorships[2].author.id | https://openalex.org/A5111031026 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Xinyuan Ni |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I148128674 |
| authorships[2].affiliations[0].raw_affiliation_string | Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China |
| authorships[2].institutions[0].id | https://openalex.org/I148128674 |
| authorships[2].institutions[0].ror | https://ror.org/00ay9v204 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I148128674 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | University of Shanghai for Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xinyuan Ni |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China |
| authorships[3].author.id | https://openalex.org/A5075684625 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Yujun Tang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I148128674 |
| authorships[3].affiliations[0].raw_affiliation_string | Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China |
| authorships[3].institutions[0].id | https://openalex.org/I148128674 |
| authorships[3].institutions[0].ror | https://ror.org/00ay9v204 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I148128674 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | University of Shanghai for Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yujun Tang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China |
| authorships[4].author.id | https://openalex.org/A5111743705 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Hanming Guo |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I148128674 |
| authorships[4].affiliations[0].raw_affiliation_string | Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China |
| authorships[4].institutions[0].id | https://openalex.org/I148128674 |
| authorships[4].institutions[0].ror | https://ror.org/00ay9v204 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I148128674 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | University of Shanghai for Science and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hanming Guo |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China |
| authorships[5].author.id | https://openalex.org/A5103848909 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3072-0634 |
| authorships[5].author.display_name | Songlin Zhuang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I148128674 |
| authorships[5].affiliations[0].raw_affiliation_string | Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China |
| authorships[5].institutions[0].id | https://openalex.org/I148128674 |
| authorships[5].institutions[0].ror | https://ror.org/00ay9v204 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I148128674 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | University of Shanghai for Science and Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Songlin Zhuang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/23/17/7433/pdf?version=1692973592 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Dense Convolutional Neural Network for Identification of Raman Spectra |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11324 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1304 |
| primary_topic.subfield.display_name | Biophysics |
| primary_topic.display_name | Spectroscopy Techniques in Biomedical and Chemical Research |
| related_works | https://openalex.org/W2058864804, https://openalex.org/W960385439, https://openalex.org/W1975083980, https://openalex.org/W2908284971, https://openalex.org/W2007615004, https://openalex.org/W2138878738, https://openalex.org/W3108187263, https://openalex.org/W1487885362, https://openalex.org/W1928722454, https://openalex.org/W2365262940 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s23177433 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/23/17/7433/pdf?version=1692973592 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s23177433 |
| primary_location.id | doi:10.3390/s23177433 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/23/17/7433/pdf?version=1692973592 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s23177433 |
| publication_date | 2023-08-25 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4210964148, https://openalex.org/W2752532133, https://openalex.org/W2984713826, https://openalex.org/W2990623796, https://openalex.org/W2914001277, https://openalex.org/W4292598933, https://openalex.org/W4221099751, https://openalex.org/W3005228941, https://openalex.org/W4296209544, https://openalex.org/W2944064124, https://openalex.org/W2986710144, https://openalex.org/W4284883599, https://openalex.org/W4294958127, https://openalex.org/W4294415037, https://openalex.org/W4280547952, https://openalex.org/W4210807577, https://openalex.org/W4200139245, https://openalex.org/W3207533527, https://openalex.org/W6684191040, https://openalex.org/W2052958516, https://openalex.org/W2163605009 |
| referenced_works_count | 21 |
| abstract_inverted_index.a | 77, 103, 133, 191, 230, 247 |
| abstract_inverted_index.32 | 199 |
| abstract_inverted_index.40 | 109 |
| abstract_inverted_index.50 | 219 |
| abstract_inverted_index.In | 74, 122, 217 |
| abstract_inverted_index.It | 145 |
| abstract_inverted_index.We | 188, 235 |
| abstract_inverted_index.as | 211 |
| abstract_inverted_index.be | 25 |
| abstract_inverted_index.in | 16, 27 |
| abstract_inverted_index.it | 42, 131 |
| abstract_inverted_index.of | 3, 13, 21, 50, 57, 72, 93, 107, 113, 119, 128, 136, 193, 198, 202, 213, 233 |
| abstract_inverted_index.on | 47, 82 |
| abstract_inverted_index.or | 151 |
| abstract_inverted_index.to | 31, 89, 115, 141, 184 |
| abstract_inverted_index.up | 190 |
| abstract_inverted_index.The | 0, 19, 96, 164, 175, 250 |
| abstract_inverted_index.and | 6, 38, 111, 160, 171, 181, 222, 242, 261 |
| abstract_inverted_index.are | 206 |
| abstract_inverted_index.can | 24, 43, 61, 146, 228 |
| abstract_inverted_index.due | 30 |
| abstract_inverted_index.for | 138, 263 |
| abstract_inverted_index.has | 86, 102, 132, 246 |
| abstract_inverted_index.its | 32 |
| abstract_inverted_index.set | 189 |
| abstract_inverted_index.the | 10, 28, 45, 48, 51, 55, 58, 69, 83, 91, 117, 123, 129, 148, 218, 225, 239, 243 |
| abstract_inverted_index.1600 | 194 |
| abstract_inverted_index.They | 205 |
| abstract_inverted_index.also | 237 |
| abstract_inverted_index.been | 87 |
| abstract_inverted_index.deep | 7, 78, 105 |
| abstract_inverted_index.each | 139 |
| abstract_inverted_index.good | 248 |
| abstract_inverted_index.have | 236 |
| abstract_inverted_index.more | 179 |
| abstract_inverted_index.over | 108 |
| abstract_inverted_index.part | 127 |
| abstract_inverted_index.this | 75, 94 |
| abstract_inverted_index.very | 104 |
| abstract_inverted_index.Dense | 84, 98, 125, 176, 226, 244 |
| abstract_inverted_index.RRUFF | 240 |
| abstract_inverted_index.Raman | 22, 195, 215, 255 |
| abstract_inverted_index.Thus, | 41 |
| abstract_inverted_index.based | 81 |
| abstract_inverted_index.cause | 62 |
| abstract_inverted_index.cloud | 4 |
| abstract_inverted_index.every | 142 |
| abstract_inverted_index.great | 63 |
| abstract_inverted_index.layer | 140 |
| abstract_inverted_index.makes | 9 |
| abstract_inverted_index.might | 66 |
| abstract_inverted_index.modes | 12 |
| abstract_inverted_index.noise | 169 |
| abstract_inverted_index.other | 143, 185 |
| abstract_inverted_index.rapid | 1 |
| abstract_inverted_index.sets, | 224 |
| abstract_inverted_index.shows | 178 |
| abstract_inverted_index.types | 201 |
| abstract_inverted_index.using | 208 |
| abstract_inverted_index.which | 65 |
| abstract_inverted_index.adjust | 116 |
| abstract_inverted_index.blocks | 126 |
| abstract_inverted_index.cloud, | 29 |
| abstract_inverted_index.kernel | 124 |
| abstract_inverted_index.layer. | 144 |
| abstract_inverted_index.layers | 110 |
| abstract_inverted_index.liquid | 203 |
| abstract_inverted_index.neural | 100 |
| abstract_inverted_index.paper, | 76 |
| abstract_inverted_index.plenty | 112 |
| abstract_inverted_index.reduce | 44 |
| abstract_inverted_index.reuses | 159 |
| abstract_inverted_index.tasks. | 266 |
| abstract_inverted_index.tested | 238 |
| abstract_inverted_index.weight | 118 |
| abstract_inverted_index.99.99%. | 234 |
| abstract_inverted_index.achieve | 229 |
| abstract_inverted_index.diverse | 264 |
| abstract_inverted_index.enhance | 161 |
| abstract_inverted_index.ensures | 172 |
| abstract_inverted_index.fashion | 135 |
| abstract_inverted_index.feature | 155, 158 |
| abstract_inverted_index.fields. | 18 |
| abstract_inverted_index.network | 85, 101, 177, 227, 245 |
| abstract_inverted_index.precise | 173 |
| abstract_inverted_index.satisfy | 90 |
| abstract_inverted_index.special | 166 |
| abstract_inverted_index.spectra | 23, 196, 256 |
| abstract_inverted_index.testing | 223 |
| abstract_inverted_index.various | 17 |
| abstract_inverted_index.vision. | 95 |
| abstract_inverted_index.However, | 54 |
| abstract_inverted_index.abundant | 35 |
| abstract_inverted_index.accuracy | 180, 232, 260 |
| abstract_inverted_index.advanced | 39 |
| abstract_inverted_index.advances | 253 |
| abstract_inverted_index.approach | 252 |
| abstract_inverted_index.compared | 183 |
| abstract_inverted_index.database | 192, 241 |
| abstract_inverted_index.decrease | 68 |
| abstract_inverted_index.detected | 207 |
| abstract_inverted_index.examples | 212 |
| abstract_inverted_index.gradient | 149 |
| abstract_inverted_index.improved | 259 |
| abstract_inverted_index.learning | 8, 79 |
| abstract_inverted_index.network, | 130 |
| abstract_inverted_index.offering | 258 |
| abstract_inverted_index.postures | 210 |
| abstract_inverted_index.powerful | 33 |
| abstract_inverted_index.proposed | 88, 97, 251 |
| abstract_inverted_index.realized | 26 |
| abstract_inverted_index.repeated | 220 |
| abstract_inverted_index.spectra. | 216 |
| abstract_inverted_index.spectral | 36 |
| abstract_inverted_index.terminal | 52 |
| abstract_inverted_index.training | 162, 221 |
| abstract_inverted_index.weighted | 231 |
| abstract_inverted_index.CNN-based | 186 |
| abstract_inverted_index.algorithm | 80 |
| abstract_inverted_index.alleviate | 147 |
| abstract_inverted_index.computing | 5 |
| abstract_inverted_index.databases | 37 |
| abstract_inverted_index.detection | 59 |
| abstract_inverted_index.different | 120, 200, 209 |
| abstract_inverted_index.encourage | 157 |
| abstract_inverted_index.explosion | 152 |
| abstract_inverted_index.mitigates | 168 |
| abstract_inverted_index.problems, | 153 |
| abstract_inverted_index.structure | 106 |
| abstract_inverted_index.vanishing | 150 |
| abstract_inverted_index.accuracies | 71 |
| abstract_inverted_index.chemicals. | 204 |
| abstract_inverted_index.complexity | 56 |
| abstract_inverted_index.computing, | 34 |
| abstract_inverted_index.connection | 137 |
| abstract_inverted_index.consisting | 197 |
| abstract_inverted_index.dependence | 46 |
| abstract_inverted_index.interfered | 214 |
| abstract_inverted_index.parameters | 114 |
| abstract_inverted_index.robustness | 182 |
| abstract_inverted_index.strengthen | 154 |
| abstract_inverted_index.wavebands. | 121 |
| abstract_inverted_index.widespread | 15 |
| abstract_inverted_index.algorithms. | 40, 73, 187 |
| abstract_inverted_index.development | 2 |
| abstract_inverted_index.efficiency. | 163 |
| abstract_inverted_index.environment | 60 |
| abstract_inverted_index.intelligent | 11 |
| abstract_inverted_index.network’s | 165 |
| abstract_inverted_index.performance | 49 |
| abstract_inverted_index.realization | 92 |
| abstract_inverted_index.adaptability | 262 |
| abstract_inverted_index.applications | 14 |
| abstract_inverted_index.architecture | 167 |
| abstract_inverted_index.feed-forward | 134 |
| abstract_inverted_index.instruments. | 53 |
| abstract_inverted_index.performance. | 249 |
| abstract_inverted_index.cloud-enabled | 254 |
| abstract_inverted_index.convolutional | 99 |
| abstract_inverted_index.interferences | 170 |
| abstract_inverted_index.propagations, | 156 |
| abstract_inverted_index.significantly | 67 |
| abstract_inverted_index.identification | 20, 70, 265 |
| abstract_inverted_index.interferences, | 64 |
| abstract_inverted_index.identification, | 257 |
| abstract_inverted_index.identification. | 174 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5111743705 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I148128674 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.49000000953674316 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.93729003 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |