Dependence and Uncertainty: Information Measures using Tsallis Entropy Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.12779
In multivariate analysis, uncertainty arises from two sources: the marginal distributions of the variables and their dependence structure. Quantifying the dependence structure is crucial, as it provides valuable insights into the relationships among components of a random vector. Copula functions effectively capture this dependence structure independent of marginals, making copula-based information measures highly significant. However, existing copula-based information measures, such as entropy, divergence, and mutual information, rely on copula densities, which may not exist in many scenarios, limiting their applicability. Recently, to address this issue, Arshad et al. (2024) introduced cumulative copula-based measures using Shannon entropy. In this paper, we extend this framework by using Tsallis entropy, a non-additive entropy that provides greater flexibility for quantifying uncertainties. We propose cumulative copula Tsallis entropy, derive its properties and bounds, and illustrate its utility through examples. We further develop a non-parametric version of the measure and validate it using coupled periodic and chaotic maps. Additionally, we extend Kerridge's inaccuracy measure and Kullback-Leibler (KL) divergence to the cumulative copula framework. Using the relationship between KL divergence and mutual information, we propose a new cumulative mutual information (CMI) measure, which outperform the limitations of density-based mutual information. Furthermore, we introduce a test procedure for testing the mutual independence among random variables using CMI measure. Finally, we illustrate the potential of the proposed CMI measure as an economic indicator through real bivariate financial time series data.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.12779
- https://arxiv.org/pdf/2502.12779
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407759703
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407759703Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.12779Digital Object Identifier
- Title
-
Dependence and Uncertainty: Information Measures using Tsallis EntropyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-18Full publication date if available
- Authors
-
Swaroop Georgy Zachariah, Mohd. Arshad, Ashok Kumar PathakList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.12779Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.12779Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.12779Direct OA link when available
- Concepts
-
Tsallis entropy, Statistical physics, Entropy (arrow of time), Econometrics, Statistics, Mathematics, Computer science, Physics, Tsallis statistics, ThermodynamicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407759703 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.12779 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.12779 |
| ids.openalex | https://openalex.org/W4407759703 |
| fwci | |
| type | preprint |
| title | Dependence and Uncertainty: Information Measures using Tsallis Entropy |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12261 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Statistical Mechanics and Entropy |
| topics[1].id | https://openalex.org/T11871 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.954200029373169 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Advanced Statistical Methods and Models |
| topics[2].id | https://openalex.org/T11918 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9528999924659729 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Forecasting Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C117521176 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7041490077972412 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7849341 |
| concepts[0].display_name | Tsallis entropy |
| concepts[1].id | https://openalex.org/C121864883 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5745421051979065 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[1].display_name | Statistical physics |
| concepts[2].id | https://openalex.org/C106301342 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5131333470344543 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4117933 |
| concepts[2].display_name | Entropy (arrow of time) |
| concepts[3].id | https://openalex.org/C149782125 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4668012261390686 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[3].display_name | Econometrics |
| concepts[4].id | https://openalex.org/C105795698 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3793860375881195 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[4].display_name | Statistics |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.33881062269210815 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.33790940046310425 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.26144304871559143 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C2780056601 |
| concepts[8].level | 2 |
| concepts[8].score | 0.21646282076835632 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7849339 |
| concepts[8].display_name | Tsallis statistics |
| concepts[9].id | https://openalex.org/C97355855 |
| concepts[9].level | 1 |
| concepts[9].score | 0.11778977513313293 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[9].display_name | Thermodynamics |
| keywords[0].id | https://openalex.org/keywords/tsallis-entropy |
| keywords[0].score | 0.7041490077972412 |
| keywords[0].display_name | Tsallis entropy |
| keywords[1].id | https://openalex.org/keywords/statistical-physics |
| keywords[1].score | 0.5745421051979065 |
| keywords[1].display_name | Statistical physics |
| keywords[2].id | https://openalex.org/keywords/entropy |
| keywords[2].score | 0.5131333470344543 |
| keywords[2].display_name | Entropy (arrow of time) |
| keywords[3].id | https://openalex.org/keywords/econometrics |
| keywords[3].score | 0.4668012261390686 |
| keywords[3].display_name | Econometrics |
| keywords[4].id | https://openalex.org/keywords/statistics |
| keywords[4].score | 0.3793860375881195 |
| keywords[4].display_name | Statistics |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.33881062269210815 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.33790940046310425 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.26144304871559143 |
| keywords[7].display_name | Physics |
| keywords[8].id | https://openalex.org/keywords/tsallis-statistics |
| keywords[8].score | 0.21646282076835632 |
| keywords[8].display_name | Tsallis statistics |
| keywords[9].id | https://openalex.org/keywords/thermodynamics |
| keywords[9].score | 0.11778977513313293 |
| keywords[9].display_name | Thermodynamics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.12779 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.12779 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.12779 |
| locations[1].id | doi:10.48550/arxiv.2502.12779 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.12779 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5009878863 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Swaroop Georgy Zachariah |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zachariah, Swaroop Georgy |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5023321081 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1877-4552 |
| authorships[1].author.display_name | Mohd. Arshad |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Arshad, Mohd. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101938221 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0774-1202 |
| authorships[2].author.display_name | Ashok Kumar Pathak |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Pathak, Ashok Kumar |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.12779 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Dependence and Uncertainty: Information Measures using Tsallis Entropy |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12261 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Statistical Mechanics and Entropy |
| related_works | https://openalex.org/W2227016990, https://openalex.org/W2033993730, https://openalex.org/W2124470848, https://openalex.org/W2337571728, https://openalex.org/W2000533339, https://openalex.org/W4367624308, https://openalex.org/W3164805786, https://openalex.org/W582915368, https://openalex.org/W2180033908, https://openalex.org/W51653785 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.12779 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.12779 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.12779 |
| primary_location.id | pmh:oai:arXiv.org:2502.12779 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.12779 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.12779 |
| publication_date | 2025-02-18 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 35, 107, 137, 178, 196 |
| abstract_inverted_index.In | 0, 96 |
| abstract_inverted_index.KL | 171 |
| abstract_inverted_index.We | 117, 134 |
| abstract_inverted_index.an | 221 |
| abstract_inverted_index.as | 24, 60, 220 |
| abstract_inverted_index.by | 103 |
| abstract_inverted_index.et | 86 |
| abstract_inverted_index.in | 74 |
| abstract_inverted_index.is | 22 |
| abstract_inverted_index.it | 25, 145 |
| abstract_inverted_index.of | 11, 34, 46, 140, 189, 215 |
| abstract_inverted_index.on | 67 |
| abstract_inverted_index.to | 81, 162 |
| abstract_inverted_index.we | 99, 153, 176, 194, 211 |
| abstract_inverted_index.CMI | 208, 218 |
| abstract_inverted_index.al. | 87 |
| abstract_inverted_index.and | 14, 63, 126, 128, 143, 149, 158, 173 |
| abstract_inverted_index.for | 114, 199 |
| abstract_inverted_index.its | 124, 130 |
| abstract_inverted_index.may | 71 |
| abstract_inverted_index.new | 179 |
| abstract_inverted_index.not | 72 |
| abstract_inverted_index.the | 8, 12, 19, 30, 141, 163, 168, 187, 201, 213, 216 |
| abstract_inverted_index.two | 6 |
| abstract_inverted_index.(KL) | 160 |
| abstract_inverted_index.from | 5 |
| abstract_inverted_index.into | 29 |
| abstract_inverted_index.many | 75 |
| abstract_inverted_index.real | 225 |
| abstract_inverted_index.rely | 66 |
| abstract_inverted_index.such | 59 |
| abstract_inverted_index.test | 197 |
| abstract_inverted_index.that | 110 |
| abstract_inverted_index.this | 42, 83, 97, 101 |
| abstract_inverted_index.time | 228 |
| abstract_inverted_index.(CMI) | 183 |
| abstract_inverted_index.Using | 167 |
| abstract_inverted_index.among | 32, 204 |
| abstract_inverted_index.data. | 230 |
| abstract_inverted_index.exist | 73 |
| abstract_inverted_index.maps. | 151 |
| abstract_inverted_index.their | 15, 78 |
| abstract_inverted_index.using | 93, 104, 146, 207 |
| abstract_inverted_index.which | 70, 185 |
| abstract_inverted_index.(2024) | 88 |
| abstract_inverted_index.Arshad | 85 |
| abstract_inverted_index.Copula | 38 |
| abstract_inverted_index.arises | 4 |
| abstract_inverted_index.copula | 68, 120, 165 |
| abstract_inverted_index.derive | 123 |
| abstract_inverted_index.extend | 100, 154 |
| abstract_inverted_index.highly | 52 |
| abstract_inverted_index.issue, | 84 |
| abstract_inverted_index.making | 48 |
| abstract_inverted_index.mutual | 64, 174, 181, 191, 202 |
| abstract_inverted_index.paper, | 98 |
| abstract_inverted_index.random | 36, 205 |
| abstract_inverted_index.series | 229 |
| abstract_inverted_index.Shannon | 94 |
| abstract_inverted_index.Tsallis | 105, 121 |
| abstract_inverted_index.address | 82 |
| abstract_inverted_index.between | 170 |
| abstract_inverted_index.bounds, | 127 |
| abstract_inverted_index.capture | 41 |
| abstract_inverted_index.chaotic | 150 |
| abstract_inverted_index.coupled | 147 |
| abstract_inverted_index.develop | 136 |
| abstract_inverted_index.entropy | 109 |
| abstract_inverted_index.further | 135 |
| abstract_inverted_index.greater | 112 |
| abstract_inverted_index.measure | 142, 157, 219 |
| abstract_inverted_index.propose | 118, 177 |
| abstract_inverted_index.testing | 200 |
| abstract_inverted_index.through | 132, 224 |
| abstract_inverted_index.utility | 131 |
| abstract_inverted_index.vector. | 37 |
| abstract_inverted_index.version | 139 |
| abstract_inverted_index.Finally, | 210 |
| abstract_inverted_index.However, | 54 |
| abstract_inverted_index.crucial, | 23 |
| abstract_inverted_index.economic | 222 |
| abstract_inverted_index.entropy, | 61, 106, 122 |
| abstract_inverted_index.entropy. | 95 |
| abstract_inverted_index.existing | 55 |
| abstract_inverted_index.insights | 28 |
| abstract_inverted_index.limiting | 77 |
| abstract_inverted_index.marginal | 9 |
| abstract_inverted_index.measure, | 184 |
| abstract_inverted_index.measure. | 209 |
| abstract_inverted_index.measures | 51, 92 |
| abstract_inverted_index.periodic | 148 |
| abstract_inverted_index.proposed | 217 |
| abstract_inverted_index.provides | 26, 111 |
| abstract_inverted_index.sources: | 7 |
| abstract_inverted_index.validate | 144 |
| abstract_inverted_index.valuable | 27 |
| abstract_inverted_index.Recently, | 80 |
| abstract_inverted_index.analysis, | 2 |
| abstract_inverted_index.bivariate | 226 |
| abstract_inverted_index.examples. | 133 |
| abstract_inverted_index.financial | 227 |
| abstract_inverted_index.framework | 102 |
| abstract_inverted_index.functions | 39 |
| abstract_inverted_index.indicator | 223 |
| abstract_inverted_index.introduce | 195 |
| abstract_inverted_index.measures, | 58 |
| abstract_inverted_index.potential | 214 |
| abstract_inverted_index.procedure | 198 |
| abstract_inverted_index.structure | 21, 44 |
| abstract_inverted_index.variables | 13, 206 |
| abstract_inverted_index.Kerridge's | 155 |
| abstract_inverted_index.components | 33 |
| abstract_inverted_index.cumulative | 90, 119, 164, 180 |
| abstract_inverted_index.densities, | 69 |
| abstract_inverted_index.dependence | 16, 20, 43 |
| abstract_inverted_index.divergence | 161, 172 |
| abstract_inverted_index.framework. | 166 |
| abstract_inverted_index.illustrate | 129, 212 |
| abstract_inverted_index.inaccuracy | 156 |
| abstract_inverted_index.introduced | 89 |
| abstract_inverted_index.marginals, | 47 |
| abstract_inverted_index.outperform | 186 |
| abstract_inverted_index.properties | 125 |
| abstract_inverted_index.scenarios, | 76 |
| abstract_inverted_index.structure. | 17 |
| abstract_inverted_index.Quantifying | 18 |
| abstract_inverted_index.divergence, | 62 |
| abstract_inverted_index.effectively | 40 |
| abstract_inverted_index.flexibility | 113 |
| abstract_inverted_index.independent | 45 |
| abstract_inverted_index.information | 50, 57, 182 |
| abstract_inverted_index.limitations | 188 |
| abstract_inverted_index.quantifying | 115 |
| abstract_inverted_index.uncertainty | 3 |
| abstract_inverted_index.Furthermore, | 193 |
| abstract_inverted_index.copula-based | 49, 56, 91 |
| abstract_inverted_index.independence | 203 |
| abstract_inverted_index.information, | 65, 175 |
| abstract_inverted_index.information. | 192 |
| abstract_inverted_index.multivariate | 1 |
| abstract_inverted_index.non-additive | 108 |
| abstract_inverted_index.relationship | 169 |
| abstract_inverted_index.significant. | 53 |
| abstract_inverted_index.Additionally, | 152 |
| abstract_inverted_index.density-based | 190 |
| abstract_inverted_index.distributions | 10 |
| abstract_inverted_index.relationships | 31 |
| abstract_inverted_index.applicability. | 79 |
| abstract_inverted_index.non-parametric | 138 |
| abstract_inverted_index.uncertainties. | 116 |
| abstract_inverted_index.Kullback-Leibler | 159 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |