Deployment of ML in Changing Environments Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1051/epjconf/202429509037
The High-Luminosity LHC upgrade of the CMS experiment will utilise a large number of Machine Learning (ML) based algorithms in its hardware-based trigger. These ML algorithms will facilitate the selection of potentially interesting events for storage and offline analysis. Strict latency and resource requirements limit the size and complexity of these models due to their use in a high-speed trigger setting and deployment on FPGA hardware. It is envisaged that these ML models will be trained on large, carefully tuned, Monte Carlo datasets and subsequently deployed in a real-world detector environment. Not only is there a potentially large difference between the MC training data and real-world conditions but these detector conditions could change over time leading to a shift in model output which could degrade trigger performance. The studies presented explore different techniques to reduce the impact of this effect, using the CMS track finding and vertex trigger algorithms as a test case. The studies compare a baseline retraining and redeployment of the model and episodic training of a model as new data arrives in a continual learning context. The results show that a continually learning algorithm outperforms a simple retrained model when degradation in detector performance is applied to the training data and is a viable option for maintaining performance in an evolving environment such as the High-Luminosity LHC.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.1051/epjconf/202429509037
- OA Status
- diamond
- References
- 7
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396685373
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396685373Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1051/epjconf/202429509037Digital Object Identifier
- Title
-
Deployment of ML in Changing EnvironmentsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Marco Barbone, Christopher S. Brown, Benjamin Charles Radburn-Smith, A. TapperList of authors in order
- Landing page
-
https://doi.org/10.1051/epjconf/202429509037Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1051/epjconf/202429509037Direct OA link when available
- Concepts
-
Software deployment, Computer science, Systems engineering, Engineering, Software engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
7Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396685373 |
|---|---|
| doi | https://doi.org/10.1051/epjconf/202429509037 |
| ids.doi | https://doi.org/10.1051/epjconf/202429509037 |
| ids.openalex | https://openalex.org/W4396685373 |
| fwci | 0.0 |
| type | article |
| title | Deployment of ML in Changing Environments |
| awards[0].id | https://openalex.org/G6632024070 |
| awards[0].funder_id | https://openalex.org/F4320334632 |
| awards[0].display_name | |
| awards[0].funder_award_id | ST/R005745/1 |
| awards[0].funder_display_name | Science and Technology Facilities Council |
| biblio.issue | |
| biblio.volume | 295 |
| biblio.last_page | 09037 |
| biblio.first_page | 09037 |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T11714 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Multimodal Machine Learning Applications |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9818000197410583 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| funders[0].id | https://openalex.org/F4320334632 |
| funders[0].ror | https://ror.org/057g20z61 |
| funders[0].display_name | Science and Technology Facilities Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C105339364 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8506406545639038 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2297740 |
| concepts[0].display_name | Software deployment |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4589496850967407 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C201995342 |
| concepts[2].level | 1 |
| concepts[2].score | 0.32043182849884033 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[2].display_name | Systems engineering |
| concepts[3].id | https://openalex.org/C127413603 |
| concepts[3].level | 0 |
| concepts[3].score | 0.28664833307266235 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[3].display_name | Engineering |
| concepts[4].id | https://openalex.org/C115903868 |
| concepts[4].level | 1 |
| concepts[4].score | 0.2387690544128418 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q80993 |
| concepts[4].display_name | Software engineering |
| keywords[0].id | https://openalex.org/keywords/software-deployment |
| keywords[0].score | 0.8506406545639038 |
| keywords[0].display_name | Software deployment |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4589496850967407 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/systems-engineering |
| keywords[2].score | 0.32043182849884033 |
| keywords[2].display_name | Systems engineering |
| keywords[3].id | https://openalex.org/keywords/engineering |
| keywords[3].score | 0.28664833307266235 |
| keywords[3].display_name | Engineering |
| keywords[4].id | https://openalex.org/keywords/software-engineering |
| keywords[4].score | 0.2387690544128418 |
| keywords[4].display_name | Software engineering |
| language | en |
| locations[0].id | doi:10.1051/epjconf/202429509037 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S19068271 |
| locations[0].source.issn | 2100-014X, 2101-6275 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2100-014X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | EPJ Web of Conferences |
| locations[0].source.host_organization | https://openalex.org/P4310319748 |
| locations[0].source.host_organization_name | EDP Sciences |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319748 |
| locations[0].source.host_organization_lineage_names | EDP Sciences |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | EPJ Web of Conferences |
| locations[0].landing_page_url | http://doi.org/10.1051/epjconf/202429509037 |
| locations[1].id | pmh:oai:cds.cern.ch:2872272 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306402194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | CERN Document Server (European Organization for Nuclear Research) |
| locations[1].source.host_organization | https://openalex.org/I67311998 |
| locations[1].source.host_organization_name | European Organization for Nuclear Research |
| locations[1].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://cds.cern.ch/record/2872272 |
| locations[2].id | pmh:oai:doaj.org/article:7c74b6dee4d64e71a4e46e1209f25093 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | EPJ Web of Conferences, Vol 295, p 09037 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/7c74b6dee4d64e71a4e46e1209f25093 |
| locations[3].id | pmh:oai:edpsciences.org:dkey/10.1051/epjconf/202429509037 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306400744 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Springer Link (Chiba Institute of Technology) |
| locations[3].source.host_organization | https://openalex.org/I8488066 |
| locations[3].source.host_organization_name | Chiba Institute of Technology |
| locations[3].source.host_organization_lineage | https://openalex.org/I8488066 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | https://doi.org/10.1051/epjconf/202429509037 |
| locations[3].landing_page_url | |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5058151853 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3495-7997 |
| authorships[0].author.display_name | Marco Barbone |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Marco Barbone |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5051065108 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4422-6031 |
| authorships[1].author.display_name | Christopher S. Brown |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Christopher Brown |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5043415603 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1488-9675 |
| authorships[2].author.display_name | Benjamin Charles Radburn-Smith |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Benjamin Radburn-Smith |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5064345784 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4543-864X |
| authorships[3].author.display_name | A. Tapper |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Alexander Tapper |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://doi.org/10.1051/epjconf/202429509037 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-05-07T00:00:00 |
| display_name | Deployment of ML in Changing Environments |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2770234245, https://openalex.org/W96612179, https://openalex.org/W4229499248, https://openalex.org/W2566006169, https://openalex.org/W1567818861, https://openalex.org/W2987774938, https://openalex.org/W4256492088, https://openalex.org/W632915154 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1051/epjconf/202429509037 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S19068271 |
| best_oa_location.source.issn | 2100-014X, 2101-6275 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2100-014X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | EPJ Web of Conferences |
| best_oa_location.source.host_organization | https://openalex.org/P4310319748 |
| best_oa_location.source.host_organization_name | EDP Sciences |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319748 |
| best_oa_location.source.host_organization_lineage_names | EDP Sciences |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | EPJ Web of Conferences |
| best_oa_location.landing_page_url | http://doi.org/10.1051/epjconf/202429509037 |
| primary_location.id | doi:10.1051/epjconf/202429509037 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S19068271 |
| primary_location.source.issn | 2100-014X, 2101-6275 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2100-014X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | EPJ Web of Conferences |
| primary_location.source.host_organization | https://openalex.org/P4310319748 |
| primary_location.source.host_organization_name | EDP Sciences |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319748 |
| primary_location.source.host_organization_lineage_names | EDP Sciences |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | EPJ Web of Conferences |
| primary_location.landing_page_url | http://doi.org/10.1051/epjconf/202429509037 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W6635264123, https://openalex.org/W3102100346, https://openalex.org/W3043426275, https://openalex.org/W3097816393, https://openalex.org/W2560647685, https://openalex.org/W6600001191, https://openalex.org/W3164731060 |
| referenced_works_count | 7 |
| abstract_inverted_index.a | 10, 57, 87, 95, 117, 150, 156, 168, 175, 183, 188, 205 |
| abstract_inverted_index.It | 66 |
| abstract_inverted_index.MC | 101 |
| abstract_inverted_index.ML | 24, 71 |
| abstract_inverted_index.an | 212 |
| abstract_inverted_index.as | 149, 170, 216 |
| abstract_inverted_index.be | 74 |
| abstract_inverted_index.in | 19, 56, 86, 119, 174, 194, 211 |
| abstract_inverted_index.is | 67, 93, 197, 204 |
| abstract_inverted_index.of | 4, 13, 30, 49, 137, 161, 167 |
| abstract_inverted_index.on | 63, 76 |
| abstract_inverted_index.to | 53, 116, 133, 199 |
| abstract_inverted_index.CMS | 6, 142 |
| abstract_inverted_index.LHC | 2 |
| abstract_inverted_index.Not | 91 |
| abstract_inverted_index.The | 0, 127, 153, 179 |
| abstract_inverted_index.and | 36, 41, 47, 61, 83, 104, 145, 159, 164, 203 |
| abstract_inverted_index.but | 107 |
| abstract_inverted_index.due | 52 |
| abstract_inverted_index.for | 34, 208 |
| abstract_inverted_index.its | 20 |
| abstract_inverted_index.new | 171 |
| abstract_inverted_index.the | 5, 28, 45, 100, 135, 141, 162, 200, 217 |
| abstract_inverted_index.use | 55 |
| abstract_inverted_index.(ML) | 16 |
| abstract_inverted_index.FPGA | 64 |
| abstract_inverted_index.LHC. | 219 |
| abstract_inverted_index.data | 103, 172, 202 |
| abstract_inverted_index.only | 92 |
| abstract_inverted_index.over | 113 |
| abstract_inverted_index.show | 181 |
| abstract_inverted_index.size | 46 |
| abstract_inverted_index.such | 215 |
| abstract_inverted_index.test | 151 |
| abstract_inverted_index.that | 69, 182 |
| abstract_inverted_index.this | 138 |
| abstract_inverted_index.time | 114 |
| abstract_inverted_index.when | 192 |
| abstract_inverted_index.will | 8, 26, 73 |
| abstract_inverted_index.Carlo | 81 |
| abstract_inverted_index.Monte | 80 |
| abstract_inverted_index.These | 23 |
| abstract_inverted_index.based | 17 |
| abstract_inverted_index.case. | 152 |
| abstract_inverted_index.could | 111, 123 |
| abstract_inverted_index.large | 11, 97 |
| abstract_inverted_index.limit | 44 |
| abstract_inverted_index.model | 120, 163, 169, 191 |
| abstract_inverted_index.shift | 118 |
| abstract_inverted_index.their | 54 |
| abstract_inverted_index.there | 94 |
| abstract_inverted_index.these | 50, 70, 108 |
| abstract_inverted_index.track | 143 |
| abstract_inverted_index.using | 140 |
| abstract_inverted_index.which | 122 |
| abstract_inverted_index.Strict | 39 |
| abstract_inverted_index.change | 112 |
| abstract_inverted_index.events | 33 |
| abstract_inverted_index.impact | 136 |
| abstract_inverted_index.large, | 77 |
| abstract_inverted_index.models | 51, 72 |
| abstract_inverted_index.number | 12 |
| abstract_inverted_index.option | 207 |
| abstract_inverted_index.output | 121 |
| abstract_inverted_index.reduce | 134 |
| abstract_inverted_index.simple | 189 |
| abstract_inverted_index.tuned, | 79 |
| abstract_inverted_index.vertex | 146 |
| abstract_inverted_index.viable | 206 |
| abstract_inverted_index.Machine | 14 |
| abstract_inverted_index.applied | 198 |
| abstract_inverted_index.arrives | 173 |
| abstract_inverted_index.between | 99 |
| abstract_inverted_index.compare | 155 |
| abstract_inverted_index.degrade | 124 |
| abstract_inverted_index.effect, | 139 |
| abstract_inverted_index.explore | 130 |
| abstract_inverted_index.finding | 144 |
| abstract_inverted_index.latency | 40 |
| abstract_inverted_index.leading | 115 |
| abstract_inverted_index.offline | 37 |
| abstract_inverted_index.results | 180 |
| abstract_inverted_index.setting | 60 |
| abstract_inverted_index.storage | 35 |
| abstract_inverted_index.studies | 128, 154 |
| abstract_inverted_index.trained | 75 |
| abstract_inverted_index.trigger | 59, 125, 147 |
| abstract_inverted_index.upgrade | 3 |
| abstract_inverted_index.utilise | 9 |
| abstract_inverted_index.Learning | 15 |
| abstract_inverted_index.baseline | 157 |
| abstract_inverted_index.context. | 178 |
| abstract_inverted_index.datasets | 82 |
| abstract_inverted_index.deployed | 85 |
| abstract_inverted_index.detector | 89, 109, 195 |
| abstract_inverted_index.episodic | 165 |
| abstract_inverted_index.evolving | 213 |
| abstract_inverted_index.learning | 177, 185 |
| abstract_inverted_index.resource | 42 |
| abstract_inverted_index.training | 102, 166, 201 |
| abstract_inverted_index.trigger. | 22 |
| abstract_inverted_index.algorithm | 186 |
| abstract_inverted_index.analysis. | 38 |
| abstract_inverted_index.carefully | 78 |
| abstract_inverted_index.continual | 176 |
| abstract_inverted_index.different | 131 |
| abstract_inverted_index.envisaged | 68 |
| abstract_inverted_index.hardware. | 65 |
| abstract_inverted_index.presented | 129 |
| abstract_inverted_index.retrained | 190 |
| abstract_inverted_index.selection | 29 |
| abstract_inverted_index.algorithms | 18, 25, 148 |
| abstract_inverted_index.complexity | 48 |
| abstract_inverted_index.conditions | 106, 110 |
| abstract_inverted_index.deployment | 62 |
| abstract_inverted_index.difference | 98 |
| abstract_inverted_index.experiment | 7 |
| abstract_inverted_index.facilitate | 27 |
| abstract_inverted_index.high-speed | 58 |
| abstract_inverted_index.real-world | 88, 105 |
| abstract_inverted_index.retraining | 158 |
| abstract_inverted_index.techniques | 132 |
| abstract_inverted_index.continually | 184 |
| abstract_inverted_index.degradation | 193 |
| abstract_inverted_index.environment | 214 |
| abstract_inverted_index.interesting | 32 |
| abstract_inverted_index.maintaining | 209 |
| abstract_inverted_index.outperforms | 187 |
| abstract_inverted_index.performance | 196, 210 |
| abstract_inverted_index.potentially | 31, 96 |
| abstract_inverted_index.environment. | 90 |
| abstract_inverted_index.performance. | 126 |
| abstract_inverted_index.redeployment | 160 |
| abstract_inverted_index.requirements | 43 |
| abstract_inverted_index.subsequently | 84 |
| abstract_inverted_index.hardware-based | 21 |
| abstract_inverted_index.High-Luminosity | 1, 218 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.06037501 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |