Describe Anything: Detailed Localized Image and Video Captioning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2504.16072
Generating detailed and accurate descriptions for specific regions in images and videos remains a fundamental challenge for vision-language models. We introduce the Describe Anything Model (DAM), a model designed for detailed localized captioning (DLC). DAM preserves both local details and global context through two key innovations: a focal prompt, which ensures high-resolution encoding of targeted regions, and a localized vision backbone, which integrates precise localization with its broader context. To tackle the scarcity of high-quality DLC data, we propose a Semi-supervised learning (SSL)-based Data Pipeline (DLC-SDP). DLC-SDP starts with existing segmentation datasets and expands to unlabeled web images using SSL. We introduce DLC-Bench, a benchmark designed to evaluate DLC without relying on reference captions. DAM sets new state-of-the-art on 7 benchmarks spanning keyword-level, phrase-level, and detailed multi-sentence localized image and video captioning.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2504.16072
- https://arxiv.org/pdf/2504.16072
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414634784
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414634784Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2504.16072Digital Object Identifier
- Title
-
Describe Anything: Detailed Localized Image and Video CaptioningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-22Full publication date if available
- Authors
-
Long Lian, Yifan Ding, Yunhao Ge, Sifei Liu, Hanzi Mao, Boyi Li, Marco Pavone, Mingyu Liu, Trevor Darrell, Adam Yala, Yin CuiList of authors in order
- Landing page
-
https://arxiv.org/abs/2504.16072Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2504.16072Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2504.16072Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414634784 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2504.16072 |
| ids.doi | https://doi.org/10.48550/arxiv.2504.16072 |
| ids.openalex | https://openalex.org/W4414634784 |
| fwci | 0.0 |
| type | preprint |
| title | Describe Anything: Detailed Localized Image and Video Captioning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T11439 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.991599977016449 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Video Analysis and Summarization |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9911999702453613 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2504.16072 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2504.16072 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2504.16072 |
| locations[1].id | doi:10.48550/arxiv.2504.16072 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2504.16072 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5114232525 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Long Lian |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lian, Long |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101822673 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1973-8374 |
| authorships[1].author.display_name | Yifan Ding |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ding, Yifan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5038696465 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8110-9280 |
| authorships[2].author.display_name | Yunhao Ge |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ge, Yunhao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5049815485 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6011-3686 |
| authorships[3].author.display_name | Sifei Liu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liu, Sifei |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5021948346 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2186-2991 |
| authorships[4].author.display_name | Hanzi Mao |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Mao, Hanzi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101884383 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8921-3808 |
| authorships[5].author.display_name | Boyi Li |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Li, Boyi |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5050003000 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0206-4337 |
| authorships[6].author.display_name | Marco Pavone |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Pavone, Marco |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5115596512 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-9905-4399 |
| authorships[7].author.display_name | Mingyu Liu |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Liu, Ming-Yu |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5029105520 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-5453-8533 |
| authorships[8].author.display_name | Trevor Darrell |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Darrell, Trevor |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5084801169 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-9576-2590 |
| authorships[9].author.display_name | Adam Yala |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Yala, Adam |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5100303262 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-2882-2033 |
| authorships[10].author.display_name | Yin Cui |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Cui, Yin |
| authorships[10].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2504.16072 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Describe Anything: Detailed Localized Image and Video Captioning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2504.16072 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2504.16072 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2504.16072 |
| primary_location.id | pmh:oai:arXiv.org:2504.16072 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2504.16072 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2504.16072 |
| publication_date | 2025-04-22 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.7 | 119 |
| abstract_inverted_index.a | 13, 26, 46, 57, 79, 103 |
| abstract_inverted_index.To | 69 |
| abstract_inverted_index.We | 19, 100 |
| abstract_inverted_index.in | 8 |
| abstract_inverted_index.of | 53, 73 |
| abstract_inverted_index.on | 111, 118 |
| abstract_inverted_index.to | 94, 106 |
| abstract_inverted_index.we | 77 |
| abstract_inverted_index.DAM | 34, 114 |
| abstract_inverted_index.DLC | 75, 108 |
| abstract_inverted_index.and | 2, 10, 39, 56, 92, 124, 129 |
| abstract_inverted_index.for | 5, 16, 29 |
| abstract_inverted_index.its | 66 |
| abstract_inverted_index.key | 44 |
| abstract_inverted_index.new | 116 |
| abstract_inverted_index.the | 21, 71 |
| abstract_inverted_index.two | 43 |
| abstract_inverted_index.web | 96 |
| abstract_inverted_index.Data | 83 |
| abstract_inverted_index.SSL. | 99 |
| abstract_inverted_index.both | 36 |
| abstract_inverted_index.sets | 115 |
| abstract_inverted_index.with | 65, 88 |
| abstract_inverted_index.Model | 24 |
| abstract_inverted_index.data, | 76 |
| abstract_inverted_index.focal | 47 |
| abstract_inverted_index.image | 128 |
| abstract_inverted_index.local | 37 |
| abstract_inverted_index.model | 27 |
| abstract_inverted_index.using | 98 |
| abstract_inverted_index.video | 130 |
| abstract_inverted_index.which | 49, 61 |
| abstract_inverted_index.(DAM), | 25 |
| abstract_inverted_index.(DLC). | 33 |
| abstract_inverted_index.global | 40 |
| abstract_inverted_index.images | 9, 97 |
| abstract_inverted_index.starts | 87 |
| abstract_inverted_index.tackle | 70 |
| abstract_inverted_index.videos | 11 |
| abstract_inverted_index.vision | 59 |
| abstract_inverted_index.DLC-SDP | 86 |
| abstract_inverted_index.broader | 67 |
| abstract_inverted_index.context | 41 |
| abstract_inverted_index.details | 38 |
| abstract_inverted_index.ensures | 50 |
| abstract_inverted_index.expands | 93 |
| abstract_inverted_index.models. | 18 |
| abstract_inverted_index.precise | 63 |
| abstract_inverted_index.prompt, | 48 |
| abstract_inverted_index.propose | 78 |
| abstract_inverted_index.regions | 7 |
| abstract_inverted_index.relying | 110 |
| abstract_inverted_index.remains | 12 |
| abstract_inverted_index.through | 42 |
| abstract_inverted_index.without | 109 |
| abstract_inverted_index.Anything | 23 |
| abstract_inverted_index.Describe | 22 |
| abstract_inverted_index.Pipeline | 84 |
| abstract_inverted_index.accurate | 3 |
| abstract_inverted_index.context. | 68 |
| abstract_inverted_index.datasets | 91 |
| abstract_inverted_index.designed | 28, 105 |
| abstract_inverted_index.detailed | 1, 30, 125 |
| abstract_inverted_index.encoding | 52 |
| abstract_inverted_index.evaluate | 107 |
| abstract_inverted_index.existing | 89 |
| abstract_inverted_index.learning | 81 |
| abstract_inverted_index.regions, | 55 |
| abstract_inverted_index.scarcity | 72 |
| abstract_inverted_index.spanning | 121 |
| abstract_inverted_index.specific | 6 |
| abstract_inverted_index.targeted | 54 |
| abstract_inverted_index.backbone, | 60 |
| abstract_inverted_index.benchmark | 104 |
| abstract_inverted_index.captions. | 113 |
| abstract_inverted_index.challenge | 15 |
| abstract_inverted_index.introduce | 20, 101 |
| abstract_inverted_index.localized | 31, 58, 127 |
| abstract_inverted_index.preserves | 35 |
| abstract_inverted_index.reference | 112 |
| abstract_inverted_index.unlabeled | 95 |
| abstract_inverted_index.(DLC-SDP). | 85 |
| abstract_inverted_index.DLC-Bench, | 102 |
| abstract_inverted_index.Generating | 0 |
| abstract_inverted_index.benchmarks | 120 |
| abstract_inverted_index.captioning | 32 |
| abstract_inverted_index.integrates | 62 |
| abstract_inverted_index.(SSL)-based | 82 |
| abstract_inverted_index.captioning. | 131 |
| abstract_inverted_index.fundamental | 14 |
| abstract_inverted_index.descriptions | 4 |
| abstract_inverted_index.high-quality | 74 |
| abstract_inverted_index.innovations: | 45 |
| abstract_inverted_index.localization | 64 |
| abstract_inverted_index.segmentation | 90 |
| abstract_inverted_index.phrase-level, | 123 |
| abstract_inverted_index.keyword-level, | 122 |
| abstract_inverted_index.multi-sentence | 126 |
| abstract_inverted_index.Semi-supervised | 80 |
| abstract_inverted_index.high-resolution | 51 |
| abstract_inverted_index.vision-language | 17 |
| abstract_inverted_index.state-of-the-art | 117 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 11 |
| citation_normalized_percentile |