Description of Dataset and 1.33km and 4km Base CAMx modeling results Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.10278516
Description of dataset Eagle Ford Shale CH4 and CO2 emissions (10.5281/zenodo.10278516) Filename: Eagle Ford Shale CH4 and CO2 emissions 11Sep2023.xslx Description: CH4 and CO2 emissions at well-level, gathering-level and plant-level Processing step: both CH4 and CO2 emissions are processed into a gridded format using SMOKE, with no temporal variations. CAMx gridded outputs Domain definition (GRIDDESC) 'LAM_40N97W' 2 33.000 45.000 -97.000 -97.000 40.000 'txs_4km' 'LAM_40N97W' -324000.000 -1584000.000 4000.000 4000.000 189 234 1 'txs_133km' 'LAM_40N97W' -324000.000 -1476000.000 1333.333 1333.333 378 459 1 CAMx configurations: Version 7.10 Simulation time period: 2019 April 1st – October 31st (with a 15-day spin-up) Chemistry turned off Zero initial and boundary concentration of CH4/CO2 Output: Gridded surface concentration and column concentration are provided in the following folder structure: domain/scenario/surface for surface concentration domain/scenario/column for column concentration. Two domains are available: txs_4km and txs_133km. There are ten sets of scenarios for each domain: base: routine CO2/CH4 emissions (10.5281/zenodo.10278516) Event Scenarios 1.33km: 10.5281/zenodo.10261056; 4km: 10.5281/zenodo.10255627 low_100kg/1000kg: 100/1000 kg/hr emission event added with low routine emissions med_100kg/1000kg: 100/1000 kg/hr emission event added with medium routine emissions high_100kg/1000kg: 100/1000 kg/hr emission event added with high routine emissions nearby_low/med/high: 100/1000kg/hr emission events added at nearby locations For example, files under 'txs_4km/base/surface' represent hourly gridded surface CH4/CO2 concentration (ppmv) with a spatial resolution of 4km x 4km. Similarly, files under 'txs_13km/nearby_high/column' represent hourly gridded CH4 column concentration (mol/m2) with a spatial resolution of 4km x 4km under scenario 'nearby_high'.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.10278516
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393429990
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393429990Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.10278516Digital Object Identifier
- Title
-
Description of Dataset and 1.33km and 4km Base CAMx modeling resultsWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-07Full publication date if available
- Authors
-
Ling Huang, Shannon Stokes, Qining Chen, Felipe J. Cardoso‐Saldaña, David T. AllenList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.10278516Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.10278516Direct OA link when available
- Concepts
-
Base (topology), Computer science, Data mining, Mathematics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393429990 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.10278516 |
| ids.doi | https://doi.org/10.5281/zenodo.10278516 |
| ids.openalex | https://openalex.org/W4393429990 |
| fwci | |
| type | dataset |
| title | Description of Dataset and 1.33km and 4km Base CAMx modeling results |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14156 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.40470001101493835 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Engineering Applied Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C42058472 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6934155821800232 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q810214 |
| concepts[0].display_name | Base (topology) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.49495166540145874 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C124101348 |
| concepts[2].level | 1 |
| concepts[2].score | 0.40032047033309937 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[2].display_name | Data mining |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.21280181407928467 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C134306372 |
| concepts[4].level | 1 |
| concepts[4].score | 0.0 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[4].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/base |
| keywords[0].score | 0.6934155821800232 |
| keywords[0].display_name | Base (topology) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.49495166540145874 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/data-mining |
| keywords[2].score | 0.40032047033309937 |
| keywords[2].display_name | Data mining |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.21280181407928467 |
| keywords[3].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.5281/zenodo.10278516 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.10278516 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5080629319 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2670-0553 |
| authorships[0].author.display_name | Ling Huang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I113940042 |
| authorships[0].affiliations[0].raw_affiliation_string | Shanghai University |
| authorships[0].institutions[0].id | https://openalex.org/I113940042 |
| authorships[0].institutions[0].ror | https://ror.org/006teas31 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I113940042 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shanghai University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ling Huang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Shanghai University |
| authorships[1].author.id | https://openalex.org/A5059221292 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2546-9617 |
| authorships[1].author.display_name | Shannon Stokes |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I86519309 |
| authorships[1].affiliations[0].raw_affiliation_string | The University of Texas at Austin |
| authorships[1].institutions[0].id | https://openalex.org/I86519309 |
| authorships[1].institutions[0].ror | https://ror.org/00hj54h04 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I86519309 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | The University of Texas at Austin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shannon Stokes |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | The University of Texas at Austin |
| authorships[2].author.id | https://openalex.org/A5035308670 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1690-8091 |
| authorships[2].author.display_name | Qining Chen |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I86519309 |
| authorships[2].affiliations[0].raw_affiliation_string | The University of Texas at Austin |
| authorships[2].institutions[0].id | https://openalex.org/I86519309 |
| authorships[2].institutions[0].ror | https://ror.org/00hj54h04 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I86519309 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | The University of Texas at Austin |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qining Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | The University of Texas at Austin |
| authorships[3].author.id | https://openalex.org/A5020067891 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6359-8076 |
| authorships[3].author.display_name | Felipe J. Cardoso‐Saldaña |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210101890 |
| authorships[3].affiliations[0].raw_affiliation_string | ExxonMobil Technology and Engineering Company |
| authorships[3].institutions[0].id | https://openalex.org/I4210101890 |
| authorships[3].institutions[0].ror | https://ror.org/017qypp02 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210101890, https://openalex.org/I923382979 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | ExxonMobil (Germany) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Felipe Cardoso-Saldaña |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | ExxonMobil Technology and Engineering Company |
| authorships[4].author.id | https://openalex.org/A5089467644 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6646-8755 |
| authorships[4].author.display_name | David T. Allen |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I86519309 |
| authorships[4].affiliations[0].raw_affiliation_string | The University of Texas at Austin |
| authorships[4].institutions[0].id | https://openalex.org/I86519309 |
| authorships[4].institutions[0].ror | https://ror.org/00hj54h04 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I86519309 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | The University of Texas at Austin |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | David Allen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | The University of Texas at Austin |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.10278516 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Description of Dataset and 1.33km and 4km Base CAMx modeling results |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T14156 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.40470001101493835 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Engineering Applied Research |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4391913857, https://openalex.org/W2350741829, https://openalex.org/W2530322880 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.10278516 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.10278516 |
| primary_location.id | doi:10.5281/zenodo.10278516 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.10278516 |
| publication_date | 2023-12-07 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.1 | 70, 79 |
| abstract_inverted_index.2 | 56 |
| abstract_inverted_index.a | 40, 94, 207, 226 |
| abstract_inverted_index.x | 212, 231 |
| abstract_inverted_index.at | 25, 191 |
| abstract_inverted_index.in | 116 |
| abstract_inverted_index.no | 46 |
| abstract_inverted_index.of | 1, 105, 140, 210, 229 |
| abstract_inverted_index.189 | 68 |
| abstract_inverted_index.1st | 89 |
| abstract_inverted_index.234 | 69 |
| abstract_inverted_index.378 | 77 |
| abstract_inverted_index.459 | 78 |
| abstract_inverted_index.4km | 211, 230, 232 |
| abstract_inverted_index.CH4 | 6, 15, 21, 33, 221 |
| abstract_inverted_index.CO2 | 8, 17, 23, 35 |
| abstract_inverted_index.For | 194 |
| abstract_inverted_index.Two | 129 |
| abstract_inverted_index.and | 7, 16, 22, 28, 34, 102, 111, 134 |
| abstract_inverted_index.are | 37, 114, 131, 137 |
| abstract_inverted_index.for | 122, 126, 142 |
| abstract_inverted_index.low | 163 |
| abstract_inverted_index.off | 99 |
| abstract_inverted_index.ten | 138 |
| abstract_inverted_index.the | 117 |
| abstract_inverted_index.– | 90 |
| abstract_inverted_index.2019 | 87 |
| abstract_inverted_index.31st | 92 |
| abstract_inverted_index.4km. | 213 |
| abstract_inverted_index.4km: | 154 |
| abstract_inverted_index.7.10 | 83 |
| abstract_inverted_index.CAMx | 49, 80 |
| abstract_inverted_index.Ford | 4, 13 |
| abstract_inverted_index.Zero | 100 |
| abstract_inverted_index.both | 32 |
| abstract_inverted_index.each | 143 |
| abstract_inverted_index.high | 183 |
| abstract_inverted_index.into | 39 |
| abstract_inverted_index.sets | 139 |
| abstract_inverted_index.time | 85 |
| abstract_inverted_index.with | 45, 162, 172, 182, 206, 225 |
| abstract_inverted_index.(with | 93 |
| abstract_inverted_index.April | 88 |
| abstract_inverted_index.Eagle | 3, 12 |
| abstract_inverted_index.Event | 150 |
| abstract_inverted_index.Shale | 5, 14 |
| abstract_inverted_index.There | 136 |
| abstract_inverted_index.added | 161, 171, 181, 190 |
| abstract_inverted_index.base: | 145 |
| abstract_inverted_index.event | 160, 170, 180 |
| abstract_inverted_index.files | 196, 215 |
| abstract_inverted_index.kg/hr | 158, 168, 178 |
| abstract_inverted_index.step: | 31 |
| abstract_inverted_index.under | 197, 216, 233 |
| abstract_inverted_index.using | 43 |
| abstract_inverted_index.(ppmv) | 205 |
| abstract_inverted_index.15-day | 95 |
| abstract_inverted_index.33.000 | 57 |
| abstract_inverted_index.40.000 | 61 |
| abstract_inverted_index.45.000 | 58 |
| abstract_inverted_index.Domain | 52 |
| abstract_inverted_index.SMOKE, | 44 |
| abstract_inverted_index.column | 112, 127, 222 |
| abstract_inverted_index.events | 189 |
| abstract_inverted_index.folder | 119 |
| abstract_inverted_index.format | 42 |
| abstract_inverted_index.hourly | 200, 219 |
| abstract_inverted_index.medium | 173 |
| abstract_inverted_index.nearby | 192 |
| abstract_inverted_index.turned | 98 |
| abstract_inverted_index.-97.000 | 59, 60 |
| abstract_inverted_index.1.33km: | 152 |
| abstract_inverted_index.CH4/CO2 | 106, 203 |
| abstract_inverted_index.CO2/CH4 | 147 |
| abstract_inverted_index.Gridded | 108 |
| abstract_inverted_index.October | 91 |
| abstract_inverted_index.Output: | 107 |
| abstract_inverted_index.Version | 82 |
| abstract_inverted_index.dataset | 2 |
| abstract_inverted_index.domain: | 144 |
| abstract_inverted_index.domains | 130 |
| abstract_inverted_index.gridded | 41, 50, 201, 220 |
| abstract_inverted_index.initial | 101 |
| abstract_inverted_index.outputs | 51 |
| abstract_inverted_index.period: | 86 |
| abstract_inverted_index.routine | 146, 164, 174, 184 |
| abstract_inverted_index.spatial | 208, 227 |
| abstract_inverted_index.surface | 109, 123, 202 |
| abstract_inverted_index.txs_4km | 133 |
| abstract_inverted_index.(mol/m2) | 224 |
| abstract_inverted_index.100/1000 | 157, 167, 177 |
| abstract_inverted_index.1333.333 | 75, 76 |
| abstract_inverted_index.4000.000 | 66, 67 |
| abstract_inverted_index.boundary | 103 |
| abstract_inverted_index.emission | 159, 169, 179, 188 |
| abstract_inverted_index.example, | 195 |
| abstract_inverted_index.provided | 115 |
| abstract_inverted_index.scenario | 234 |
| abstract_inverted_index.spin-up) | 96 |
| abstract_inverted_index.temporal | 47 |
| abstract_inverted_index.'txs_4km' | 62 |
| abstract_inverted_index.Chemistry | 97 |
| abstract_inverted_index.Filename: | 11 |
| abstract_inverted_index.Scenarios | 151 |
| abstract_inverted_index.emissions | 9, 18, 24, 36, 148, 165, 175, 185 |
| abstract_inverted_index.following | 118 |
| abstract_inverted_index.locations | 193 |
| abstract_inverted_index.processed | 38 |
| abstract_inverted_index.represent | 199, 218 |
| abstract_inverted_index.scenarios | 141 |
| abstract_inverted_index.(GRIDDESC) | 54 |
| abstract_inverted_index.Processing | 30 |
| abstract_inverted_index.Similarly, | 214 |
| abstract_inverted_index.Simulation | 84 |
| abstract_inverted_index.available: | 132 |
| abstract_inverted_index.definition | 53 |
| abstract_inverted_index.resolution | 209, 228 |
| abstract_inverted_index.structure: | 120 |
| abstract_inverted_index.txs_133km. | 135 |
| abstract_inverted_index.'txs_133km' | 71 |
| abstract_inverted_index.-324000.000 | 64, 73 |
| abstract_inverted_index.Description | 0 |
| abstract_inverted_index.plant-level | 29 |
| abstract_inverted_index.variations. | 48 |
| abstract_inverted_index.well-level, | 26 |
| abstract_inverted_index.'LAM_40N97W' | 55, 63, 72 |
| abstract_inverted_index.-1476000.000 | 74 |
| abstract_inverted_index.-1584000.000 | 65 |
| abstract_inverted_index.Description: | 20 |
| abstract_inverted_index.100/1000kg/hr | 187 |
| abstract_inverted_index.concentration | 104, 110, 113, 124, 204, 223 |
| abstract_inverted_index.'nearby_high'. | 235 |
| abstract_inverted_index.11Sep2023.xslx | 19 |
| abstract_inverted_index.concentration. | 128 |
| abstract_inverted_index.configurations: | 81 |
| abstract_inverted_index.gathering-level | 27 |
| abstract_inverted_index.low_100kg/1000kg: | 156 |
| abstract_inverted_index.med_100kg/1000kg: | 166 |
| abstract_inverted_index.high_100kg/1000kg: | 176 |
| abstract_inverted_index.nearby_low/med/high: | 186 |
| abstract_inverted_index.'txs_4km/base/surface' | 198 |
| abstract_inverted_index.domain/scenario/column | 125 |
| abstract_inverted_index.10.5281/zenodo.10255627 | 155 |
| abstract_inverted_index.domain/scenario/surface | 121 |
| abstract_inverted_index.10.5281/zenodo.10261056; | 153 |
| abstract_inverted_index.(10.5281/zenodo.10278516) | 10, 149 |
| abstract_inverted_index.'txs_13km/nearby_high/column' | 217 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |