Design and optimization of a new NiTi-based shape memory alloy structures for damping applications via additive manufacturing Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1007/s40964-025-00962-4
Shape Memory Alloys (SMA), such as NiTi-based systems, are functional materials suitable for damping applications due to their pseudoelastic effect. This property allows to obtain simple, lightweight structures capable of absorbing energy through a mechanical hysteresis and able to recover significant deformations. For this reason, SMA are attractive candidates for the development of novel devices in many fields, such as the biomedical one or in aerospace and in automotive. Recently, the development of Additive Manufacturing (AM) of metals has considerably expanded the design and production possibilities of SMA-based devices, potentially overcoming the limited workability of these materials through conventional manufacturing techniques, which is one of the main limitations to their wider adoption. This study presents a preliminary investigation of a NiTi octahedral cell structure fabricated via Laser Powder Bed Fusion (L-PBF) starting from a NiTi powder with Ni content of 50.8 at. %. Cells of different sizes were manufactured and subjected to compression tests up to 0.8 mm displacement in order to evaluate their mechanical and functional performances. Furthermore, a numeric model was used to redesign the geometry in order to optimize the structure's damping capacity. The material input data of the numerical model were obtained from mechanical and thermal analyses on square prisms, which were printed with the primary axis oriented perpendicular and at an inclination of 60° to the building platform. Finally, the optimized cell was manufactured and mechanically tested at different temperatures. The obtained results prove the high efficiency of the structure when used for damping applications and highlight the potential of AM to produce NiTi structures that combine load-bearing capabilities and functional responses.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s40964-025-00962-4
- https://link.springer.com/content/pdf/10.1007/s40964-025-00962-4.pdf
- OA Status
- hybrid
- Cited By
- 3
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406824501
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406824501Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s40964-025-00962-4Digital Object Identifier
- Title
-
Design and optimization of a new NiTi-based shape memory alloy structures for damping applications via additive manufacturingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-25Full publication date if available
- Authors
-
Tiziana Biasutti, Paolo Bettini, Antonio Mattia Grande, Giuseppe Sala, Bianca Maria Colosimo, Adelaide NespoliList of authors in order
- Landing page
-
https://doi.org/10.1007/s40964-025-00962-4Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s40964-025-00962-4.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s40964-025-00962-4.pdfDirect OA link when available
- Concepts
-
Shape-memory alloy, Nickel titanium, Materials science, Alloy, Mechanical engineering, Computer science, Structural engineering, Composite material, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406824501 |
|---|---|
| doi | https://doi.org/10.1007/s40964-025-00962-4 |
| ids.doi | https://doi.org/10.1007/s40964-025-00962-4 |
| ids.openalex | https://openalex.org/W4406824501 |
| fwci | 4.75637144 |
| type | article |
| title | Design and optimization of a new NiTi-based shape memory alloy structures for damping applications via additive manufacturing |
| awards[0].id | https://openalex.org/G4413697288 |
| awards[0].funder_id | https://openalex.org/F4320322256 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2018-5-HH.0 |
| awards[0].funder_display_name | Agenzia Spaziale Italiana |
| biblio.issue | 9 |
| biblio.volume | 10 |
| biblio.last_page | 6165 |
| biblio.first_page | 6151 |
| topics[0].id | https://openalex.org/T10865 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Shape Memory Alloy Transformations |
| funders[0].id | https://openalex.org/F4320322256 |
| funders[0].ror | https://ror.org/034zgem50 |
| funders[0].display_name | Agenzia Spaziale Italiana |
| is_xpac | False |
| apc_list.value | 2490 |
| apc_list.currency | EUR |
| apc_list.value_usd | 3090 |
| apc_paid.value | 2490 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 3090 |
| concepts[0].id | https://openalex.org/C49097943 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9325824975967407 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q898455 |
| concepts[0].display_name | Shape-memory alloy |
| concepts[1].id | https://openalex.org/C160798091 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8436400890350342 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5459028 |
| concepts[1].display_name | Nickel titanium |
| concepts[2].id | https://openalex.org/C192562407 |
| concepts[2].level | 0 |
| concepts[2].score | 0.586264967918396 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[2].display_name | Materials science |
| concepts[3].id | https://openalex.org/C2780026712 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4996762275695801 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q37756 |
| concepts[3].display_name | Alloy |
| concepts[4].id | https://openalex.org/C78519656 |
| concepts[4].level | 1 |
| concepts[4].score | 0.38847917318344116 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[4].display_name | Mechanical engineering |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3817724585533142 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C66938386 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3794163465499878 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[6].display_name | Structural engineering |
| concepts[7].id | https://openalex.org/C159985019 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3025569021701813 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[7].display_name | Composite material |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.1874135434627533 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/shape-memory-alloy |
| keywords[0].score | 0.9325824975967407 |
| keywords[0].display_name | Shape-memory alloy |
| keywords[1].id | https://openalex.org/keywords/nickel-titanium |
| keywords[1].score | 0.8436400890350342 |
| keywords[1].display_name | Nickel titanium |
| keywords[2].id | https://openalex.org/keywords/materials-science |
| keywords[2].score | 0.586264967918396 |
| keywords[2].display_name | Materials science |
| keywords[3].id | https://openalex.org/keywords/alloy |
| keywords[3].score | 0.4996762275695801 |
| keywords[3].display_name | Alloy |
| keywords[4].id | https://openalex.org/keywords/mechanical-engineering |
| keywords[4].score | 0.38847917318344116 |
| keywords[4].display_name | Mechanical engineering |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.3817724585533142 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/structural-engineering |
| keywords[6].score | 0.3794163465499878 |
| keywords[6].display_name | Structural engineering |
| keywords[7].id | https://openalex.org/keywords/composite-material |
| keywords[7].score | 0.3025569021701813 |
| keywords[7].display_name | Composite material |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.1874135434627533 |
| keywords[8].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1007/s40964-025-00962-4 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210206835 |
| locations[0].source.issn | 2363-9512, 2363-9520 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2363-9512 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Progress in Additive Manufacturing |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s40964-025-00962-4.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Progress in Additive Manufacturing |
| locations[0].landing_page_url | https://doi.org/10.1007/s40964-025-00962-4 |
| locations[1].id | pmh:oai:re.public.polimi.it:11311/1283547 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400312 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Virtual Community of Pathological Anatomy (University of Castilla La Mancha) |
| locations[1].source.host_organization | https://openalex.org/I79189158 |
| locations[1].source.host_organization_name | University of Castilla-La Mancha |
| locations[1].source.host_organization_lineage | https://openalex.org/I79189158 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/article |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://hdl.handle.net/11311/1283547 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5093365703 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-8951-3008 |
| authorships[0].author.display_name | Tiziana Biasutti |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tiziana Biasutti |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5114375795 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1083-5792 |
| authorships[1].author.display_name | Paolo Bettini |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Paolo Bettini |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5066570449 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4913-2525 |
| authorships[2].author.display_name | Antonio Mattia Grande |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Antonio Mattia Grande |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5032299596 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1997-6073 |
| authorships[3].author.display_name | Giuseppe Sala |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Giuseppe Sala |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5032398347 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6844-2030 |
| authorships[4].author.display_name | Bianca Maria Colosimo |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Bianca Maria Colosimo |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5031681653 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7485-9411 |
| authorships[5].author.display_name | Adelaide Nespoli |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Adelaide Nespoli |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s40964-025-00962-4.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Design and optimization of a new NiTi-based shape memory alloy structures for damping applications via additive manufacturing |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10865 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Shape Memory Alloy Transformations |
| related_works | https://openalex.org/W2924725649, https://openalex.org/W2385384698, https://openalex.org/W1575260103, https://openalex.org/W3158632378, https://openalex.org/W2394412003, https://openalex.org/W4327555413, https://openalex.org/W2410036361, https://openalex.org/W1989043416, https://openalex.org/W2770903585, https://openalex.org/W3035961541 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1007/s40964-025-00962-4 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210206835 |
| best_oa_location.source.issn | 2363-9512, 2363-9520 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2363-9512 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Progress in Additive Manufacturing |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s40964-025-00962-4.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Progress in Additive Manufacturing |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s40964-025-00962-4 |
| primary_location.id | doi:10.1007/s40964-025-00962-4 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210206835 |
| primary_location.source.issn | 2363-9512, 2363-9520 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2363-9512 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Progress in Additive Manufacturing |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s40964-025-00962-4.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Progress in Additive Manufacturing |
| primary_location.landing_page_url | https://doi.org/10.1007/s40964-025-00962-4 |
| publication_date | 2025-01-25 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2896565067, https://openalex.org/W4392709615, https://openalex.org/W4388765441, https://openalex.org/W2547873606, https://openalex.org/W1973565005, https://openalex.org/W2335153782, https://openalex.org/W4386216008, https://openalex.org/W4389109458, https://openalex.org/W1972830257, https://openalex.org/W2911598575, https://openalex.org/W1968003972, https://openalex.org/W3016356924, https://openalex.org/W3209650926, https://openalex.org/W3131570391, https://openalex.org/W2485660173, https://openalex.org/W4210551539, https://openalex.org/W4392595427, https://openalex.org/W3128639361, https://openalex.org/W3157361665, https://openalex.org/W3190533404, https://openalex.org/W4214848423, https://openalex.org/W3193868277, https://openalex.org/W4200080335, https://openalex.org/W4295300842, https://openalex.org/W4294946176, https://openalex.org/W3007106393, https://openalex.org/W2909678645, https://openalex.org/W2921115255, https://openalex.org/W3049569601, https://openalex.org/W3042181962, https://openalex.org/W2790915263, https://openalex.org/W4220694172, https://openalex.org/W4307190455, https://openalex.org/W4321793658, https://openalex.org/W2517705236, https://openalex.org/W3186951076, https://openalex.org/W4327702707, https://openalex.org/W4388294808, https://openalex.org/W4287378206, https://openalex.org/W4380873532, https://openalex.org/W3014133519, https://openalex.org/W4399041914, https://openalex.org/W2113913360, https://openalex.org/W3143065835, https://openalex.org/W3034220699, https://openalex.org/W2569377651 |
| referenced_works_count | 46 |
| abstract_inverted_index.a | 34, 116, 120, 134, 170 |
| abstract_inverted_index.%. | 143 |
| abstract_inverted_index.AM | 256 |
| abstract_inverted_index.Ni | 138 |
| abstract_inverted_index.an | 216 |
| abstract_inverted_index.as | 6, 60 |
| abstract_inverted_index.at | 215, 233 |
| abstract_inverted_index.in | 56, 65, 68, 160, 179 |
| abstract_inverted_index.is | 103 |
| abstract_inverted_index.mm | 158 |
| abstract_inverted_index.of | 30, 53, 73, 77, 87, 95, 105, 119, 140, 145, 191, 218, 243, 255 |
| abstract_inverted_index.on | 202 |
| abstract_inverted_index.or | 64 |
| abstract_inverted_index.to | 17, 24, 39, 109, 152, 156, 162, 175, 181, 220, 257 |
| abstract_inverted_index.up | 155 |
| abstract_inverted_index.0.8 | 157 |
| abstract_inverted_index.Bed | 129 |
| abstract_inverted_index.For | 43 |
| abstract_inverted_index.SMA | 46 |
| abstract_inverted_index.The | 187, 236 |
| abstract_inverted_index.and | 37, 67, 84, 150, 166, 199, 214, 230, 251, 265 |
| abstract_inverted_index.are | 9, 47 |
| abstract_inverted_index.at. | 142 |
| abstract_inverted_index.due | 16 |
| abstract_inverted_index.for | 13, 50, 248 |
| abstract_inverted_index.has | 79 |
| abstract_inverted_index.one | 63, 104 |
| abstract_inverted_index.the | 51, 61, 71, 82, 92, 106, 177, 183, 192, 209, 221, 225, 240, 244, 253 |
| abstract_inverted_index.via | 126 |
| abstract_inverted_index.was | 173, 228 |
| abstract_inverted_index.(AM) | 76 |
| abstract_inverted_index.50.8 | 141 |
| abstract_inverted_index.60° | 219 |
| abstract_inverted_index.NiTi | 121, 135, 259 |
| abstract_inverted_index.This | 21, 113 |
| abstract_inverted_index.able | 38 |
| abstract_inverted_index.axis | 211 |
| abstract_inverted_index.cell | 123, 227 |
| abstract_inverted_index.data | 190 |
| abstract_inverted_index.from | 133, 197 |
| abstract_inverted_index.high | 241 |
| abstract_inverted_index.main | 107 |
| abstract_inverted_index.many | 57 |
| abstract_inverted_index.such | 5, 59 |
| abstract_inverted_index.that | 261 |
| abstract_inverted_index.this | 44 |
| abstract_inverted_index.used | 174, 247 |
| abstract_inverted_index.were | 148, 195, 206 |
| abstract_inverted_index.when | 246 |
| abstract_inverted_index.with | 137, 208 |
| abstract_inverted_index.Cells | 144 |
| abstract_inverted_index.Laser | 127 |
| abstract_inverted_index.Shape | 1 |
| abstract_inverted_index.input | 189 |
| abstract_inverted_index.model | 172, 194 |
| abstract_inverted_index.novel | 54 |
| abstract_inverted_index.order | 161, 180 |
| abstract_inverted_index.prove | 239 |
| abstract_inverted_index.sizes | 147 |
| abstract_inverted_index.study | 114 |
| abstract_inverted_index.tests | 154 |
| abstract_inverted_index.their | 18, 110, 164 |
| abstract_inverted_index.these | 96 |
| abstract_inverted_index.which | 102, 205 |
| abstract_inverted_index.wider | 111 |
| abstract_inverted_index.(SMA), | 4 |
| abstract_inverted_index.Alloys | 3 |
| abstract_inverted_index.Fusion | 130 |
| abstract_inverted_index.Memory | 2 |
| abstract_inverted_index.Powder | 128 |
| abstract_inverted_index.allows | 23 |
| abstract_inverted_index.design | 83 |
| abstract_inverted_index.energy | 32 |
| abstract_inverted_index.metals | 78 |
| abstract_inverted_index.obtain | 25 |
| abstract_inverted_index.powder | 136 |
| abstract_inverted_index.square | 203 |
| abstract_inverted_index.tested | 232 |
| abstract_inverted_index.(L-PBF) | 131 |
| abstract_inverted_index.capable | 29 |
| abstract_inverted_index.combine | 262 |
| abstract_inverted_index.content | 139 |
| abstract_inverted_index.damping | 14, 185, 249 |
| abstract_inverted_index.devices | 55 |
| abstract_inverted_index.effect. | 20 |
| abstract_inverted_index.fields, | 58 |
| abstract_inverted_index.limited | 93 |
| abstract_inverted_index.numeric | 171 |
| abstract_inverted_index.primary | 210 |
| abstract_inverted_index.printed | 207 |
| abstract_inverted_index.prisms, | 204 |
| abstract_inverted_index.produce | 258 |
| abstract_inverted_index.reason, | 45 |
| abstract_inverted_index.recover | 40 |
| abstract_inverted_index.results | 238 |
| abstract_inverted_index.simple, | 26 |
| abstract_inverted_index.thermal | 200 |
| abstract_inverted_index.through | 33, 98 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Additive | 74 |
| abstract_inverted_index.Finally, | 224 |
| abstract_inverted_index.analyses | 201 |
| abstract_inverted_index.building | 222 |
| abstract_inverted_index.devices, | 89 |
| abstract_inverted_index.evaluate | 163 |
| abstract_inverted_index.expanded | 81 |
| abstract_inverted_index.geometry | 178 |
| abstract_inverted_index.material | 188 |
| abstract_inverted_index.obtained | 196, 237 |
| abstract_inverted_index.optimize | 182 |
| abstract_inverted_index.oriented | 212 |
| abstract_inverted_index.presents | 115 |
| abstract_inverted_index.property | 22 |
| abstract_inverted_index.redesign | 176 |
| abstract_inverted_index.starting | 132 |
| abstract_inverted_index.suitable | 12 |
| abstract_inverted_index.systems, | 8 |
| abstract_inverted_index.Recently, | 70 |
| abstract_inverted_index.SMA-based | 88 |
| abstract_inverted_index.absorbing | 31 |
| abstract_inverted_index.adoption. | 112 |
| abstract_inverted_index.aerospace | 66 |
| abstract_inverted_index.capacity. | 186 |
| abstract_inverted_index.different | 146, 234 |
| abstract_inverted_index.highlight | 252 |
| abstract_inverted_index.materials | 11, 97 |
| abstract_inverted_index.numerical | 193 |
| abstract_inverted_index.optimized | 226 |
| abstract_inverted_index.platform. | 223 |
| abstract_inverted_index.potential | 254 |
| abstract_inverted_index.structure | 124, 245 |
| abstract_inverted_index.subjected | 151 |
| abstract_inverted_index.NiTi-based | 7 |
| abstract_inverted_index.attractive | 48 |
| abstract_inverted_index.biomedical | 62 |
| abstract_inverted_index.candidates | 49 |
| abstract_inverted_index.efficiency | 242 |
| abstract_inverted_index.fabricated | 125 |
| abstract_inverted_index.functional | 10, 167, 266 |
| abstract_inverted_index.hysteresis | 36 |
| abstract_inverted_index.mechanical | 35, 165, 198 |
| abstract_inverted_index.octahedral | 122 |
| abstract_inverted_index.overcoming | 91 |
| abstract_inverted_index.production | 85 |
| abstract_inverted_index.responses. | 267 |
| abstract_inverted_index.structures | 28, 260 |
| abstract_inverted_index.automotive. | 69 |
| abstract_inverted_index.compression | 153 |
| abstract_inverted_index.development | 52, 72 |
| abstract_inverted_index.inclination | 217 |
| abstract_inverted_index.lightweight | 27 |
| abstract_inverted_index.limitations | 108 |
| abstract_inverted_index.potentially | 90 |
| abstract_inverted_index.preliminary | 117 |
| abstract_inverted_index.significant | 41 |
| abstract_inverted_index.structure's | 184 |
| abstract_inverted_index.techniques, | 101 |
| abstract_inverted_index.workability | 94 |
| abstract_inverted_index.Furthermore, | 169 |
| abstract_inverted_index.applications | 15, 250 |
| abstract_inverted_index.capabilities | 264 |
| abstract_inverted_index.considerably | 80 |
| abstract_inverted_index.conventional | 99 |
| abstract_inverted_index.displacement | 159 |
| abstract_inverted_index.load-bearing | 263 |
| abstract_inverted_index.manufactured | 149, 229 |
| abstract_inverted_index.mechanically | 231 |
| abstract_inverted_index.Manufacturing | 75 |
| abstract_inverted_index.deformations. | 42 |
| abstract_inverted_index.investigation | 118 |
| abstract_inverted_index.manufacturing | 100 |
| abstract_inverted_index.performances. | 168 |
| abstract_inverted_index.perpendicular | 213 |
| abstract_inverted_index.possibilities | 86 |
| abstract_inverted_index.pseudoelastic | 19 |
| abstract_inverted_index.temperatures. | 235 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.86475619 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |