Design of a Mulitmodal Detection System and Its First Application in Tea Selection Process Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.20944/preprints202404.0434.v1
A multimodal detection system with complementary capabilities for efficient detection was developed for impurity detection. The system consisted of a visible light camera, a multispectral camera, image correction and registration algorithms. It can obtain spectral feature and color feature at the same time, and has higher spatial resolution than a single spectral camera. This system was applied to detect impurities in Pu ’er tea to verify its high efficiency. The spectral and color features of each pixel in the images of Pu ’er tea were obtained by this system and used for pixel classification. The experimental results show that the accuracy of Support Vector Machine (SVM) model based on combined features is 93%, which is 7% higher than that based on only spectral features. By applying median filtering algorithm and contour detection algorithm to the label matrix extracted from pixel-classified images, 8 impurities except hair were detected successfully. Moreover, taking advantage of the high resolution of visible light camera, small impurities can be clearly imaged. By comparing the segmented color image with the pixel-classified image, small impurities such as hair could be detected successfully. Finally, it is proved that the system can obtain multiple images to allow a more detailed and comprehensive understanding of the detected items, and has excellent ability to detect small impurities.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.20944/preprints202404.0434.v1
- https://www.preprints.org/manuscript/202404.0434/v1/download
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394691099
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394691099Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20944/preprints202404.0434.v1Digital Object Identifier
- Title
-
Design of a Mulitmodal Detection System and Its First Application in Tea Selection ProcessWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-05Full publication date if available
- Authors
-
Zhankun Kuang, Xiangyang Yu, Yuchen Guo, Yefan Cai, Weibin HongList of authors in order
- Landing page
-
https://doi.org/10.20944/preprints202404.0434.v1Publisher landing page
- PDF URL
-
https://www.preprints.org/manuscript/202404.0434/v1/downloadDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.preprints.org/manuscript/202404.0434/v1/downloadDirect OA link when available
- Concepts
-
Selection (genetic algorithm), Process (computing), Computer science, Process engineering, Artificial intelligence, Engineering, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394691099 |
|---|---|
| doi | https://doi.org/10.20944/preprints202404.0434.v1 |
| ids.doi | https://doi.org/10.20944/preprints202404.0434.v1 |
| ids.openalex | https://openalex.org/W4394691099 |
| fwci | 0.0 |
| type | preprint |
| title | Design of a Mulitmodal Detection System and Its First Application in Tea Selection Process |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11667 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9810000061988831 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Advanced Chemical Sensor Technologies |
| topics[1].id | https://openalex.org/T12388 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.949999988079071 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Identification and Quantification in Food |
| topics[2].id | https://openalex.org/T10908 |
| topics[2].field.id | https://openalex.org/fields/16 |
| topics[2].field.display_name | Chemistry |
| topics[2].score | 0.9373000264167786 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1607 |
| topics[2].subfield.display_name | Spectroscopy |
| topics[2].display_name | Analytical Chemistry and Chromatography |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81917197 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7011955976486206 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[0].display_name | Selection (genetic algorithm) |
| concepts[1].id | https://openalex.org/C98045186 |
| concepts[1].level | 2 |
| concepts[1].score | 0.597771167755127 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[1].display_name | Process (computing) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5199231505393982 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C21880701 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3521299958229065 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2144042 |
| concepts[3].display_name | Process engineering |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.2983478307723999 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C127413603 |
| concepts[5].level | 0 |
| concepts[5].score | 0.19579342007637024 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[5].display_name | Engineering |
| concepts[6].id | https://openalex.org/C111919701 |
| concepts[6].level | 1 |
| concepts[6].score | 0.09870171546936035 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[6].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/selection |
| keywords[0].score | 0.7011955976486206 |
| keywords[0].display_name | Selection (genetic algorithm) |
| keywords[1].id | https://openalex.org/keywords/process |
| keywords[1].score | 0.597771167755127 |
| keywords[1].display_name | Process (computing) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5199231505393982 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/process-engineering |
| keywords[3].score | 0.3521299958229065 |
| keywords[3].display_name | Process engineering |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.2983478307723999 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/engineering |
| keywords[5].score | 0.19579342007637024 |
| keywords[5].display_name | Engineering |
| keywords[6].id | https://openalex.org/keywords/operating-system |
| keywords[6].score | 0.09870171546936035 |
| keywords[6].display_name | Operating system |
| language | en |
| locations[0].id | doi:10.20944/preprints202404.0434.v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6309402219 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Preprints.org |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.preprints.org/manuscript/202404.0434/v1/download |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20944/preprints202404.0434.v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5026382726 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-7545-4365 |
| authorships[0].author.display_name | Zhankun Kuang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhankun Kuang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101776455 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6673-3221 |
| authorships[1].author.display_name | Xiangyang Yu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiangyang Yu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100720834 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4901-2737 |
| authorships[2].author.display_name | Yuchen Guo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuchen Guo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100590869 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Yefan Cai |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yefan Cai |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5108770749 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Weibin Hong |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Weibin Hong |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.preprints.org/manuscript/202404.0434/v1/download |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Design of a Mulitmodal Detection System and Its First Application in Tea Selection Process |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11667 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9810000061988831 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Advanced Chemical Sensor Technologies |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W4391913857, https://openalex.org/W2350741829, https://openalex.org/W2530322880 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.20944/preprints202404.0434.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6309402219 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Preprints.org |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.preprints.org/manuscript/202404.0434/v1/download |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20944/preprints202404.0434.v1 |
| primary_location.id | doi:10.20944/preprints202404.0434.v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6309402219 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Preprints.org |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.preprints.org/manuscript/202404.0434/v1/download |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20944/preprints202404.0434.v1 |
| publication_date | 2024-04-05 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.8 | 141 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 19, 23, 49, 197 |
| abstract_inverted_index.7% | 115 |
| abstract_inverted_index.By | 124, 165 |
| abstract_inverted_index.It | 31 |
| abstract_inverted_index.Pu | 61, 81 |
| abstract_inverted_index.as | 178 |
| abstract_inverted_index.at | 39 |
| abstract_inverted_index.be | 162, 181 |
| abstract_inverted_index.by | 86 |
| abstract_inverted_index.in | 60, 77 |
| abstract_inverted_index.is | 111, 114, 186 |
| abstract_inverted_index.it | 185 |
| abstract_inverted_index.of | 18, 74, 80, 101, 151, 155, 203 |
| abstract_inverted_index.on | 108, 120 |
| abstract_inverted_index.to | 57, 64, 133, 195, 211 |
| abstract_inverted_index.The | 15, 69, 94 |
| abstract_inverted_index.and | 28, 36, 43, 71, 89, 129, 200, 207 |
| abstract_inverted_index.can | 32, 161, 191 |
| abstract_inverted_index.for | 7, 12, 91 |
| abstract_inverted_index.has | 44, 208 |
| abstract_inverted_index.its | 66 |
| abstract_inverted_index.tea | 63, 83 |
| abstract_inverted_index.the | 40, 78, 99, 134, 152, 167, 172, 189, 204 |
| abstract_inverted_index.was | 10, 55 |
| abstract_inverted_index.93%, | 112 |
| abstract_inverted_index.This | 53 |
| abstract_inverted_index.each | 75 |
| abstract_inverted_index.from | 138 |
| abstract_inverted_index.hair | 144, 179 |
| abstract_inverted_index.high | 67, 153 |
| abstract_inverted_index.more | 198 |
| abstract_inverted_index.only | 121 |
| abstract_inverted_index.same | 41 |
| abstract_inverted_index.show | 97 |
| abstract_inverted_index.such | 177 |
| abstract_inverted_index.than | 48, 117 |
| abstract_inverted_index.that | 98, 118, 188 |
| abstract_inverted_index.this | 87 |
| abstract_inverted_index.used | 90 |
| abstract_inverted_index.were | 84, 145 |
| abstract_inverted_index.with | 4, 171 |
| abstract_inverted_index.(SVM) | 105 |
| abstract_inverted_index.allow | 196 |
| abstract_inverted_index.based | 107, 119 |
| abstract_inverted_index.color | 37, 72, 169 |
| abstract_inverted_index.could | 180 |
| abstract_inverted_index.image | 26, 170 |
| abstract_inverted_index.label | 135 |
| abstract_inverted_index.light | 21, 157 |
| abstract_inverted_index.model | 106 |
| abstract_inverted_index.pixel | 76, 92 |
| abstract_inverted_index.small | 159, 175, 213 |
| abstract_inverted_index.time, | 42 |
| abstract_inverted_index.which | 113 |
| abstract_inverted_index.’er | 62, 82 |
| abstract_inverted_index.Vector | 103 |
| abstract_inverted_index.detect | 58, 212 |
| abstract_inverted_index.except | 143 |
| abstract_inverted_index.higher | 45, 116 |
| abstract_inverted_index.image, | 174 |
| abstract_inverted_index.images | 79, 194 |
| abstract_inverted_index.items, | 206 |
| abstract_inverted_index.matrix | 136 |
| abstract_inverted_index.median | 126 |
| abstract_inverted_index.obtain | 33, 192 |
| abstract_inverted_index.proved | 187 |
| abstract_inverted_index.single | 50 |
| abstract_inverted_index.system | 3, 16, 54, 88, 190 |
| abstract_inverted_index.taking | 149 |
| abstract_inverted_index.verify | 65 |
| abstract_inverted_index.Machine | 104 |
| abstract_inverted_index.Support | 102 |
| abstract_inverted_index.ability | 210 |
| abstract_inverted_index.applied | 56 |
| abstract_inverted_index.camera, | 22, 25, 158 |
| abstract_inverted_index.camera. | 52 |
| abstract_inverted_index.clearly | 163 |
| abstract_inverted_index.contour | 130 |
| abstract_inverted_index.feature | 35, 38 |
| abstract_inverted_index.imaged. | 164 |
| abstract_inverted_index.images, | 140 |
| abstract_inverted_index.results | 96 |
| abstract_inverted_index.spatial | 46 |
| abstract_inverted_index.visible | 20, 156 |
| abstract_inverted_index.Finally, | 184 |
| abstract_inverted_index.accuracy | 100 |
| abstract_inverted_index.applying | 125 |
| abstract_inverted_index.combined | 109 |
| abstract_inverted_index.detailed | 199 |
| abstract_inverted_index.detected | 146, 182, 205 |
| abstract_inverted_index.features | 73, 110 |
| abstract_inverted_index.impurity | 13 |
| abstract_inverted_index.multiple | 193 |
| abstract_inverted_index.obtained | 85 |
| abstract_inverted_index.spectral | 34, 51, 70, 122 |
| abstract_inverted_index.Moreover, | 148 |
| abstract_inverted_index.advantage | 150 |
| abstract_inverted_index.algorithm | 128, 132 |
| abstract_inverted_index.comparing | 166 |
| abstract_inverted_index.consisted | 17 |
| abstract_inverted_index.detection | 2, 9, 131 |
| abstract_inverted_index.developed | 11 |
| abstract_inverted_index.efficient | 8 |
| abstract_inverted_index.excellent | 209 |
| abstract_inverted_index.extracted | 137 |
| abstract_inverted_index.features. | 123 |
| abstract_inverted_index.filtering | 127 |
| abstract_inverted_index.segmented | 168 |
| abstract_inverted_index.correction | 27 |
| abstract_inverted_index.detection. | 14 |
| abstract_inverted_index.impurities | 59, 142, 160, 176 |
| abstract_inverted_index.multimodal | 1 |
| abstract_inverted_index.resolution | 47, 154 |
| abstract_inverted_index.algorithms. | 30 |
| abstract_inverted_index.efficiency. | 68 |
| abstract_inverted_index.impurities. | 214 |
| abstract_inverted_index.capabilities | 6 |
| abstract_inverted_index.experimental | 95 |
| abstract_inverted_index.registration | 29 |
| abstract_inverted_index.complementary | 5 |
| abstract_inverted_index.comprehensive | 201 |
| abstract_inverted_index.multispectral | 24 |
| abstract_inverted_index.successfully. | 147, 183 |
| abstract_inverted_index.understanding | 202 |
| abstract_inverted_index.classification. | 93 |
| abstract_inverted_index.pixel-classified | 139, 173 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.05681156 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |