Design of Escalator Fault Prediction and Intelligent Maintenance System Based on Machine Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3233/atde250892
As urban transit systems become increasingly dependent on vertical transportation infrastructure, ensuring the reliability and safety of escalators is critical for operational efficiency and public safety. Traditional escalator maintenance strategies, primarily based on scheduled inspections or reactive repairs, often fail to detect early-stage faults, resulting in unexpected failures, increased downtime, and elevated costs. In response to these challenges, this study proposes an intelligent escalator fault prediction and maintenance system powered by machine learning algorithms. The system integrates real-time sensor data, fault history, and operational parameters to construct predictive models using decision trees, support vector machines, and deep learning techniques. Experimental results on real-world maintenance datasets demonstrate that the proposed approach significantly improves fault detection accuracy, enables early warnings, and reduces maintenance response time. This work presents a scalable and adaptive framework that enhances equipment availability and extends escalator service life through intelligent, data-driven diagnostics and maintenance planning.
Related Topics
- Type
- book-chapter
- Language
- en
- Landing Page
- https://doi.org/10.3233/atde250892
- OA Status
- diamond
- OpenAlex ID
- https://openalex.org/W4414777984
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414777984Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3233/atde250892Digital Object Identifier
- Title
-
Design of Escalator Fault Prediction and Intelligent Maintenance System Based on Machine LearningWork title
- Type
-
book-chapterOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-01Full publication date if available
- Authors
-
Xiaoqing Wang, Wanli Yu, Liqi Lin, Pengcheng Liu, Dongdong ChenList of authors in order
- Landing page
-
https://doi.org/10.3233/atde250892Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3233/atde250892Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414777984 |
|---|---|
| doi | https://doi.org/10.3233/atde250892 |
| ids.doi | https://doi.org/10.3233/atde250892 |
| ids.openalex | https://openalex.org/W4414777984 |
| fwci | 0.0 |
| type | book-chapter |
| title | Design of Escalator Fault Prediction and Intelligent Maintenance System Based on Machine Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13955 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.7888000011444092 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2302 |
| topics[0].subfield.display_name | Ecological Modeling |
| topics[0].display_name | Evaluation Methods in Various Fields |
| topics[1].id | https://openalex.org/T14225 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.7429999709129333 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Advanced Sensor and Control Systems |
| topics[2].id | https://openalex.org/T13832 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.690500020980835 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Advanced Decision-Making Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.3233/atde250892 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210187496 |
| locations[0].source.issn | 2352-751X, 2352-7528 |
| locations[0].source.type | book series |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2352-751X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Advances in transdisciplinary engineering |
| locations[0].source.host_organization | https://openalex.org/P4310318577 |
| locations[0].source.host_organization_name | IOS Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310318577 |
| locations[0].source.host_organization_lineage_names | IOS Press |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Advances in Transdisciplinary Engineering |
| locations[0].landing_page_url | https://doi.org/10.3233/atde250892 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5016741649 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0235-6310 |
| authorships[0].author.display_name | Xiaoqing Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210115152 |
| authorships[0].affiliations[0].raw_affiliation_string | Zhejiang Academy of Special Equipment Science, 310000, Hangzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210115152 |
| authorships[0].institutions[0].ror | https://ror.org/01jb3sz14 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210115152 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhejiang Institute of Special Equipment Inspection |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiaoqing Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Zhejiang Academy of Special Equipment Science, 310000, Hangzhou, China |
| authorships[1].author.id | https://openalex.org/A5058429956 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1299-6223 |
| authorships[1].author.display_name | Wanli Yu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210158295 |
| authorships[1].affiliations[0].raw_affiliation_string | Wenzhou Special Equipment Inspection & Sciences Research Institute, 325000, Wenzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210158295 |
| authorships[1].institutions[0].ror | https://ror.org/04xxxza58 |
| authorships[1].institutions[0].type | other |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210158295 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Wenzhou Institute of Technology Testing & Calibration |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wanli Yu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Wenzhou Special Equipment Inspection & Sciences Research Institute, 325000, Wenzhou, China |
| authorships[2].author.id | https://openalex.org/A5088895879 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Liqi Lin |
| authorships[2].affiliations[0].raw_affiliation_string | Zhejiang Zhedun Testing Technology, 310000, Hangzhou, China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liqi Lin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Zhejiang Zhedun Testing Technology, 310000, Hangzhou, China |
| authorships[3].author.id | https://openalex.org/A5100449822 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0874-1538 |
| authorships[3].author.display_name | Pengcheng Liu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210153422 |
| authorships[3].affiliations[0].raw_affiliation_string | Hangzhou Special Equipment Inspection & Science Research Institute, 310000, Hangzhou, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210153422 |
| authorships[3].institutions[0].ror | https://ror.org/04vkyz392 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210153422 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Hangzhou Special Equipment Inspection and Research Institute |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pengcheng Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Hangzhou Special Equipment Inspection & Science Research Institute, 310000, Hangzhou, China |
| authorships[4].author.id | https://openalex.org/A5053421884 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3620-4318 |
| authorships[4].author.display_name | Dongdong Chen |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210115152 |
| authorships[4].affiliations[0].raw_affiliation_string | Zhejiang Academy of Special Equipment Science, 310000, Hangzhou, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210115152 |
| authorships[4].institutions[0].ror | https://ror.org/01jb3sz14 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210115152 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Zhejiang Institute of Special Equipment Inspection |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Dongdong Chen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Zhejiang Academy of Special Equipment Science, 310000, Hangzhou, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3233/atde250892 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Design of Escalator Fault Prediction and Intelligent Maintenance System Based on Machine Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13955 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.7888000011444092 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2302 |
| primary_topic.subfield.display_name | Ecological Modeling |
| primary_topic.display_name | Evaluation Methods in Various Fields |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3233/atde250892 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210187496 |
| best_oa_location.source.issn | 2352-751X, 2352-7528 |
| best_oa_location.source.type | book series |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2352-751X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Advances in transdisciplinary engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310318577 |
| best_oa_location.source.host_organization_name | IOS Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310318577 |
| best_oa_location.source.host_organization_lineage_names | IOS Press |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | book-chapter |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Advances in Transdisciplinary Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.3233/atde250892 |
| primary_location.id | doi:10.3233/atde250892 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210187496 |
| primary_location.source.issn | 2352-751X, 2352-7528 |
| primary_location.source.type | book series |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2352-751X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Advances in transdisciplinary engineering |
| primary_location.source.host_organization | https://openalex.org/P4310318577 |
| primary_location.source.host_organization_name | IOS Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310318577 |
| primary_location.source.host_organization_lineage_names | IOS Press |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Advances in Transdisciplinary Engineering |
| primary_location.landing_page_url | https://doi.org/10.3233/atde250892 |
| publication_date | 2025-10-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 126 |
| abstract_inverted_index.As | 0 |
| abstract_inverted_index.In | 53 |
| abstract_inverted_index.an | 61 |
| abstract_inverted_index.by | 70 |
| abstract_inverted_index.in | 45 |
| abstract_inverted_index.is | 18 |
| abstract_inverted_index.of | 16 |
| abstract_inverted_index.on | 7, 32, 101 |
| abstract_inverted_index.or | 35 |
| abstract_inverted_index.to | 40, 55, 85 |
| abstract_inverted_index.The | 74 |
| abstract_inverted_index.and | 14, 23, 50, 66, 82, 95, 118, 128, 135, 144 |
| abstract_inverted_index.for | 20 |
| abstract_inverted_index.the | 12, 107 |
| abstract_inverted_index.This | 123 |
| abstract_inverted_index.deep | 96 |
| abstract_inverted_index.fail | 39 |
| abstract_inverted_index.life | 139 |
| abstract_inverted_index.that | 106, 131 |
| abstract_inverted_index.this | 58 |
| abstract_inverted_index.work | 124 |
| abstract_inverted_index.based | 31 |
| abstract_inverted_index.data, | 79 |
| abstract_inverted_index.early | 116 |
| abstract_inverted_index.fault | 64, 80, 112 |
| abstract_inverted_index.often | 38 |
| abstract_inverted_index.study | 59 |
| abstract_inverted_index.these | 56 |
| abstract_inverted_index.time. | 122 |
| abstract_inverted_index.urban | 1 |
| abstract_inverted_index.using | 89 |
| abstract_inverted_index.become | 4 |
| abstract_inverted_index.costs. | 52 |
| abstract_inverted_index.detect | 41 |
| abstract_inverted_index.models | 88 |
| abstract_inverted_index.public | 24 |
| abstract_inverted_index.safety | 15 |
| abstract_inverted_index.sensor | 78 |
| abstract_inverted_index.system | 68, 75 |
| abstract_inverted_index.trees, | 91 |
| abstract_inverted_index.vector | 93 |
| abstract_inverted_index.enables | 115 |
| abstract_inverted_index.extends | 136 |
| abstract_inverted_index.faults, | 43 |
| abstract_inverted_index.machine | 71 |
| abstract_inverted_index.powered | 69 |
| abstract_inverted_index.reduces | 119 |
| abstract_inverted_index.results | 100 |
| abstract_inverted_index.safety. | 25 |
| abstract_inverted_index.service | 138 |
| abstract_inverted_index.support | 92 |
| abstract_inverted_index.systems | 3 |
| abstract_inverted_index.through | 140 |
| abstract_inverted_index.transit | 2 |
| abstract_inverted_index.adaptive | 129 |
| abstract_inverted_index.approach | 109 |
| abstract_inverted_index.critical | 19 |
| abstract_inverted_index.datasets | 104 |
| abstract_inverted_index.decision | 90 |
| abstract_inverted_index.elevated | 51 |
| abstract_inverted_index.enhances | 132 |
| abstract_inverted_index.ensuring | 11 |
| abstract_inverted_index.history, | 81 |
| abstract_inverted_index.improves | 111 |
| abstract_inverted_index.learning | 72, 97 |
| abstract_inverted_index.presents | 125 |
| abstract_inverted_index.proposed | 108 |
| abstract_inverted_index.proposes | 60 |
| abstract_inverted_index.reactive | 36 |
| abstract_inverted_index.repairs, | 37 |
| abstract_inverted_index.response | 54, 121 |
| abstract_inverted_index.scalable | 127 |
| abstract_inverted_index.vertical | 8 |
| abstract_inverted_index.accuracy, | 114 |
| abstract_inverted_index.construct | 86 |
| abstract_inverted_index.dependent | 6 |
| abstract_inverted_index.detection | 113 |
| abstract_inverted_index.downtime, | 49 |
| abstract_inverted_index.equipment | 133 |
| abstract_inverted_index.escalator | 27, 63, 137 |
| abstract_inverted_index.failures, | 47 |
| abstract_inverted_index.framework | 130 |
| abstract_inverted_index.increased | 48 |
| abstract_inverted_index.machines, | 94 |
| abstract_inverted_index.planning. | 146 |
| abstract_inverted_index.primarily | 30 |
| abstract_inverted_index.real-time | 77 |
| abstract_inverted_index.resulting | 44 |
| abstract_inverted_index.scheduled | 33 |
| abstract_inverted_index.warnings, | 117 |
| abstract_inverted_index.efficiency | 22 |
| abstract_inverted_index.escalators | 17 |
| abstract_inverted_index.integrates | 76 |
| abstract_inverted_index.parameters | 84 |
| abstract_inverted_index.prediction | 65 |
| abstract_inverted_index.predictive | 87 |
| abstract_inverted_index.real-world | 102 |
| abstract_inverted_index.unexpected | 46 |
| abstract_inverted_index.Traditional | 26 |
| abstract_inverted_index.algorithms. | 73 |
| abstract_inverted_index.challenges, | 57 |
| abstract_inverted_index.data-driven | 142 |
| abstract_inverted_index.demonstrate | 105 |
| abstract_inverted_index.diagnostics | 143 |
| abstract_inverted_index.early-stage | 42 |
| abstract_inverted_index.inspections | 34 |
| abstract_inverted_index.intelligent | 62 |
| abstract_inverted_index.maintenance | 28, 67, 103, 120, 145 |
| abstract_inverted_index.operational | 21, 83 |
| abstract_inverted_index.reliability | 13 |
| abstract_inverted_index.strategies, | 29 |
| abstract_inverted_index.techniques. | 98 |
| abstract_inverted_index.Experimental | 99 |
| abstract_inverted_index.availability | 134 |
| abstract_inverted_index.increasingly | 5 |
| abstract_inverted_index.intelligent, | 141 |
| abstract_inverted_index.significantly | 110 |
| abstract_inverted_index.transportation | 9 |
| abstract_inverted_index.infrastructure, | 10 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.46685879 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |