Designing Informative Metrics for Few-Shot Example Selection Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2403.03861
Pretrained language models (PLMs) have shown remarkable few-shot learning capabilities when provided with properly formatted examples. However, selecting the "best" examples remains an open challenge. We propose a complexity-based prompt selection approach for sequence tagging tasks. This approach avoids the training of a dedicated model for selection of examples, and instead uses certain metrics to align the syntactico-semantic complexity of test sentences and examples. We use both sentence- and word-level metrics to match the complexity of examples to the (test) sentence being considered. Our results demonstrate that our approach extracts greater performance from PLMs: it achieves state-of-the-art performance on few-shot NER, achieving a 5% absolute improvement in F1 score on the CoNLL2003 dataset for GPT-4. We also see large gains of upto 28.85 points (F1/Acc.) in smaller models like GPT-j-6B.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2403.03861
- https://arxiv.org/pdf/2403.03861
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392576613
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392576613Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2403.03861Digital Object Identifier
- Title
-
Designing Informative Metrics for Few-Shot Example SelectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-06Full publication date if available
- Authors
-
Rishabh Adiga, Lakshminarayanan Subramanian, Varun ChandrasekaranList of authors in order
- Landing page
-
https://arxiv.org/abs/2403.03861Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2403.03861Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2403.03861Direct OA link when available
- Concepts
-
Selection (genetic algorithm), Shot (pellet), Computer science, Artificial intelligence, Machine learning, Chemistry, Organic chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392576613 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2403.03861 |
| ids.doi | https://doi.org/10.48550/arxiv.2403.03861 |
| ids.openalex | https://openalex.org/W4392576613 |
| fwci | |
| type | preprint |
| title | Designing Informative Metrics for Few-Shot Example Selection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10848 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.5443000197410583 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Advanced Multi-Objective Optimization Algorithms |
| topics[1].id | https://openalex.org/T11159 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.5349000096321106 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Manufacturing Process and Optimization |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81917197 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7790572047233582 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[0].display_name | Selection (genetic algorithm) |
| concepts[1].id | https://openalex.org/C2778344882 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6434872150421143 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q278938 |
| concepts[1].display_name | Shot (pellet) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5281712412834167 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4602922201156616 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.39453649520874023 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C185592680 |
| concepts[5].level | 0 |
| concepts[5].score | 0.09643593430519104 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[5].display_name | Chemistry |
| concepts[6].id | https://openalex.org/C178790620 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[6].display_name | Organic chemistry |
| keywords[0].id | https://openalex.org/keywords/selection |
| keywords[0].score | 0.7790572047233582 |
| keywords[0].display_name | Selection (genetic algorithm) |
| keywords[1].id | https://openalex.org/keywords/shot |
| keywords[1].score | 0.6434872150421143 |
| keywords[1].display_name | Shot (pellet) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5281712412834167 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4602922201156616 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.39453649520874023 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/chemistry |
| keywords[5].score | 0.09643593430519104 |
| keywords[5].display_name | Chemistry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2403.03861 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2403.03861 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2403.03861 |
| locations[1].id | doi:10.48550/arxiv.2403.03861 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2403.03861 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5094095396 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Rishabh Adiga |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Adiga, Rishabh |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5072232894 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8101-1243 |
| authorships[1].author.display_name | Lakshminarayanan Subramanian |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Subramanian, Lakshminarayanan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5009092703 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0661-6378 |
| authorships[2].author.display_name | Varun Chandrasekaran |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Chandrasekaran, Varun |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2403.03861 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Designing Informative Metrics for Few-Shot Example Selection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10848 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.5443000197410583 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Advanced Multi-Objective Optimization Algorithms |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347, https://openalex.org/W4210805261 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2403.03861 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2403.03861 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2403.03861 |
| primary_location.id | pmh:oai:arXiv.org:2403.03861 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2403.03861 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2403.03861 |
| publication_date | 2024-03-06 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 27, 42, 102 |
| abstract_inverted_index.5% | 103 |
| abstract_inverted_index.F1 | 107 |
| abstract_inverted_index.We | 25, 64, 115 |
| abstract_inverted_index.an | 22 |
| abstract_inverted_index.in | 106, 125 |
| abstract_inverted_index.it | 94 |
| abstract_inverted_index.of | 41, 47, 59, 75, 120 |
| abstract_inverted_index.on | 98, 109 |
| abstract_inverted_index.to | 54, 71, 77 |
| abstract_inverted_index.Our | 83 |
| abstract_inverted_index.and | 49, 62, 68 |
| abstract_inverted_index.for | 32, 45, 113 |
| abstract_inverted_index.our | 87 |
| abstract_inverted_index.see | 117 |
| abstract_inverted_index.the | 18, 39, 56, 73, 78, 110 |
| abstract_inverted_index.use | 65 |
| abstract_inverted_index.NER, | 100 |
| abstract_inverted_index.This | 36 |
| abstract_inverted_index.also | 116 |
| abstract_inverted_index.both | 66 |
| abstract_inverted_index.from | 92 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.like | 128 |
| abstract_inverted_index.open | 23 |
| abstract_inverted_index.test | 60 |
| abstract_inverted_index.that | 86 |
| abstract_inverted_index.upto | 121 |
| abstract_inverted_index.uses | 51 |
| abstract_inverted_index.when | 10 |
| abstract_inverted_index.with | 12 |
| abstract_inverted_index.28.85 | 122 |
| abstract_inverted_index.PLMs: | 93 |
| abstract_inverted_index.align | 55 |
| abstract_inverted_index.being | 81 |
| abstract_inverted_index.gains | 119 |
| abstract_inverted_index.large | 118 |
| abstract_inverted_index.match | 72 |
| abstract_inverted_index.model | 44 |
| abstract_inverted_index.score | 108 |
| abstract_inverted_index.shown | 5 |
| abstract_inverted_index."best" | 19 |
| abstract_inverted_index.(PLMs) | 3 |
| abstract_inverted_index.(test) | 79 |
| abstract_inverted_index.GPT-4. | 114 |
| abstract_inverted_index.avoids | 38 |
| abstract_inverted_index.models | 2, 127 |
| abstract_inverted_index.points | 123 |
| abstract_inverted_index.prompt | 29 |
| abstract_inverted_index.tasks. | 35 |
| abstract_inverted_index.certain | 52 |
| abstract_inverted_index.dataset | 112 |
| abstract_inverted_index.greater | 90 |
| abstract_inverted_index.instead | 50 |
| abstract_inverted_index.metrics | 53, 70 |
| abstract_inverted_index.propose | 26 |
| abstract_inverted_index.remains | 21 |
| abstract_inverted_index.results | 84 |
| abstract_inverted_index.smaller | 126 |
| abstract_inverted_index.tagging | 34 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.absolute | 104 |
| abstract_inverted_index.achieves | 95 |
| abstract_inverted_index.approach | 31, 37, 88 |
| abstract_inverted_index.examples | 20, 76 |
| abstract_inverted_index.extracts | 89 |
| abstract_inverted_index.few-shot | 7, 99 |
| abstract_inverted_index.language | 1 |
| abstract_inverted_index.learning | 8 |
| abstract_inverted_index.properly | 13 |
| abstract_inverted_index.provided | 11 |
| abstract_inverted_index.sentence | 80 |
| abstract_inverted_index.sequence | 33 |
| abstract_inverted_index.training | 40 |
| abstract_inverted_index.(F1/Acc.) | 124 |
| abstract_inverted_index.CoNLL2003 | 111 |
| abstract_inverted_index.GPT-j-6B. | 129 |
| abstract_inverted_index.achieving | 101 |
| abstract_inverted_index.dedicated | 43 |
| abstract_inverted_index.examples, | 48 |
| abstract_inverted_index.examples. | 15, 63 |
| abstract_inverted_index.formatted | 14 |
| abstract_inverted_index.selecting | 17 |
| abstract_inverted_index.selection | 30, 46 |
| abstract_inverted_index.sentence- | 67 |
| abstract_inverted_index.sentences | 61 |
| abstract_inverted_index.Pretrained | 0 |
| abstract_inverted_index.challenge. | 24 |
| abstract_inverted_index.complexity | 58, 74 |
| abstract_inverted_index.remarkable | 6 |
| abstract_inverted_index.word-level | 69 |
| abstract_inverted_index.considered. | 82 |
| abstract_inverted_index.demonstrate | 85 |
| abstract_inverted_index.improvement | 105 |
| abstract_inverted_index.performance | 91, 97 |
| abstract_inverted_index.capabilities | 9 |
| abstract_inverted_index.complexity-based | 28 |
| abstract_inverted_index.state-of-the-art | 96 |
| abstract_inverted_index.syntactico-semantic | 57 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |