Designs for order-of-addition experiments Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1080/02664763.2020.1801607
The order-of-addition experiment aims at determining the optimal order of adding components such that the response of interest is optimized. Order of addition has been widely involved in many areas, including bio-chemistry, food science, nutritional science, pharmaceutical science, etc. However, such an important study is rather primitive in statistical literature. In this paper, a thorough study on pair-wise ordering designs for order of addition is provided. The recursive relation between two successive full pair-wise ordering designs is developed. Based on this recursive relation, the full pair-wise ordering design can be obtained without evaluating all the orders of components. The value of the D-efficiency for the full pair-wise ordering model is then derived. It provides a benchmark for choosing the fractional pair-wise ordering designs. To overcome the unaffordability of the full pair-wise ordering design, a new class of minimal-point pair-wise ordering designs is proposed. A job scheduling problem as well as simulation studies are conducted to illustrate the performance of the pair-wise ordering designs for determining the optimal orders. It is shown that the proposed designs are very efficient in determining the optimal order of addition.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/02664763.2020.1801607
- OA Status
- green
- Cited By
- 34
- References
- 11
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3047522539
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3047522539Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/02664763.2020.1801607Digital Object Identifier
- Title
-
Designs for order-of-addition experimentsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-08-05Full publication date if available
- Authors
-
Yuna Zhao, Dennis K. J. Lin, Min‐Qian LiuList of authors in order
- Landing page
-
https://doi.org/10.1080/02664763.2020.1801607Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/9097982Direct OA link when available
- Concepts
-
Computer science, Mathematical optimization, Benchmark (surveying), Order (exchange), Relation (database), Class (philosophy), Scheduling (production processes), Algorithm, Mathematics, Data mining, Artificial intelligence, Economics, Geodesy, Geography, FinanceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
34Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 4, 2023: 9, 2022: 5, 2021: 7Per-year citation counts (last 5 years)
- References (count)
-
11Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3047522539 |
|---|---|
| doi | https://doi.org/10.1080/02664763.2020.1801607 |
| ids.doi | https://doi.org/10.1080/02664763.2020.1801607 |
| ids.mag | 3047522539 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35706467 |
| ids.openalex | https://openalex.org/W3047522539 |
| fwci | 4.45711819 |
| type | article |
| title | Designs for order-of-addition experiments |
| awards[0].id | https://openalex.org/G5114696489 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 11601244 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G1557141267 |
| awards[1].funder_id | https://openalex.org/F4320306076 |
| awards[1].display_name | |
| awards[1].funder_award_id | DMS-18102925 |
| awards[1].funder_display_name | National Science Foundation |
| awards[2].id | https://openalex.org/G8373891187 |
| awards[2].funder_id | https://openalex.org/F4320324174 |
| awards[2].display_name | |
| awards[2].funder_award_id | ZR2018BA013 |
| awards[2].funder_display_name | Natural Science Foundation of Shandong Province |
| awards[3].id | https://openalex.org/G8855986473 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 11771220 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| awards[4].id | https://openalex.org/G7625522969 |
| awards[4].funder_id | https://openalex.org/F4320321001 |
| awards[4].display_name | |
| awards[4].funder_award_id | 11701020 |
| awards[4].funder_display_name | National Natural Science Foundation of China |
| awards[5].id | https://openalex.org/G5124724892 |
| awards[5].funder_id | https://openalex.org/F4320321001 |
| awards[5].display_name | |
| awards[5].funder_award_id | 11801331 |
| awards[5].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 8 |
| biblio.volume | 48 |
| biblio.last_page | 1495 |
| biblio.first_page | 1475 |
| topics[0].id | https://openalex.org/T11798 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Optimal Experimental Design Methods |
| topics[1].id | https://openalex.org/T10848 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9857000112533569 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Advanced Multi-Objective Optimization Algorithms |
| topics[2].id | https://openalex.org/T11663 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9315000176429749 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Viral Infectious Diseases and Gene Expression in Insects |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| funders[1].id | https://openalex.org/F4320321001 |
| funders[1].ror | https://ror.org/01h0zpd94 |
| funders[1].display_name | National Natural Science Foundation of China |
| funders[2].id | https://openalex.org/F4320324174 |
| funders[2].ror | |
| funders[2].display_name | Natural Science Foundation of Shandong Province |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5682723522186279 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C126255220 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5085500478744507 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[1].display_name | Mathematical optimization |
| concepts[2].id | https://openalex.org/C185798385 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4876900911331177 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[2].display_name | Benchmark (surveying) |
| concepts[3].id | https://openalex.org/C182306322 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4554672837257385 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1779371 |
| concepts[3].display_name | Order (exchange) |
| concepts[4].id | https://openalex.org/C25343380 |
| concepts[4].level | 2 |
| concepts[4].score | 0.44662150740623474 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q277521 |
| concepts[4].display_name | Relation (database) |
| concepts[5].id | https://openalex.org/C2777212361 |
| concepts[5].level | 2 |
| concepts[5].score | 0.44657909870147705 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[5].display_name | Class (philosophy) |
| concepts[6].id | https://openalex.org/C206729178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4255765676498413 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2271896 |
| concepts[6].display_name | Scheduling (production processes) |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3893207013607025 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.31881457567214966 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.15511468052864075 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.08894482254981995 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C162324750 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[11].display_name | Economics |
| concepts[12].id | https://openalex.org/C13280743 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[12].display_name | Geodesy |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C10138342 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[14].display_name | Finance |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5682723522186279 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[1].score | 0.5085500478744507 |
| keywords[1].display_name | Mathematical optimization |
| keywords[2].id | https://openalex.org/keywords/benchmark |
| keywords[2].score | 0.4876900911331177 |
| keywords[2].display_name | Benchmark (surveying) |
| keywords[3].id | https://openalex.org/keywords/order |
| keywords[3].score | 0.4554672837257385 |
| keywords[3].display_name | Order (exchange) |
| keywords[4].id | https://openalex.org/keywords/relation |
| keywords[4].score | 0.44662150740623474 |
| keywords[4].display_name | Relation (database) |
| keywords[5].id | https://openalex.org/keywords/class |
| keywords[5].score | 0.44657909870147705 |
| keywords[5].display_name | Class (philosophy) |
| keywords[6].id | https://openalex.org/keywords/scheduling |
| keywords[6].score | 0.4255765676498413 |
| keywords[6].display_name | Scheduling (production processes) |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.3893207013607025 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.31881457567214966 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.15511468052864075 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.08894482254981995 |
| keywords[10].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1080/02664763.2020.1801607 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S167117542 |
| locations[0].source.issn | 0266-4763, 1360-0532 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0266-4763 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Applied Statistics |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_lineage_names | Taylor & Francis |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Applied Statistics |
| locations[0].landing_page_url | https://doi.org/10.1080/02664763.2020.1801607 |
| locations[1].id | pmid:35706467 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of applied statistics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35706467 |
| locations[2].id | pmh:oai:RePEc:taf:japsta:v:48:y:2021:i:8:p:1475-1495 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401271 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | RePEc: Research Papers in Economics |
| locations[2].source.host_organization | https://openalex.org/I77793887 |
| locations[2].source.host_organization_name | Federal Reserve Bank of St. Louis |
| locations[2].source.host_organization_lineage | https://openalex.org/I77793887 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://hdl.handle.net/10.1080/02664763.2020.1801607 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:9097982 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | J Appl Stat |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9097982 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5017683206 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9176-5580 |
| authorships[0].author.display_name | Yuna Zhao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I28006308 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Mathematics and Statistics, Shandong Normal University, Jinan, People's Republic of China |
| authorships[0].institutions[0].id | https://openalex.org/I28006308 |
| authorships[0].institutions[0].ror | https://ror.org/01wy3h363 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I28006308 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shandong Normal University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuna Zhao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Mathematics and Statistics, Shandong Normal University, Jinan, People's Republic of China |
| authorships[1].author.id | https://openalex.org/A5057669385 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2552-7709 |
| authorships[1].author.display_name | Dennis K. J. Lin |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I219193219 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Statistics, Purdue University, West Lafayette, IN, USA |
| authorships[1].institutions[0].id | https://openalex.org/I219193219 |
| authorships[1].institutions[0].ror | https://ror.org/02dqehb95 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I219193219 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Purdue University West Lafayette |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dennis K. J. Lin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Statistics, Purdue University, West Lafayette, IN, USA |
| authorships[2].author.id | https://openalex.org/A5059659163 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1954-6241 |
| authorships[2].author.display_name | Min‐Qian Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I205237279 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Statistics and Data Science, LPMC & KLMDASR, Nankai University, Tianjin, People's Republic of China |
| authorships[2].institutions[0].id | https://openalex.org/I205237279 |
| authorships[2].institutions[0].ror | https://ror.org/01y1kjr75 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I205237279 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Nankai University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Min-Qian Liu |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | School of Statistics and Data Science, LPMC & KLMDASR, Nankai University, Tianjin, People's Republic of China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9097982 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Designs for order-of-addition experiments |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11798 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Optimal Experimental Design Methods |
| related_works | https://openalex.org/W2378211422, https://openalex.org/W2745001401, https://openalex.org/W4321353415, https://openalex.org/W2130974462, https://openalex.org/W972276598, https://openalex.org/W4246352526, https://openalex.org/W2028665553, https://openalex.org/W2086519370, https://openalex.org/W2087343574, https://openalex.org/W2348093013 |
| cited_by_count | 34 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 9 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 7 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:9097982 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | J Appl Stat |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9097982 |
| primary_location.id | doi:10.1080/02664763.2020.1801607 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S167117542 |
| primary_location.source.issn | 0266-4763, 1360-0532 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0266-4763 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Applied Statistics |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_lineage_names | Taylor & Francis |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Applied Statistics |
| primary_location.landing_page_url | https://doi.org/10.1080/02664763.2020.1801607 |
| publication_date | 2020-08-05 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W3006508563, https://openalex.org/W2064384323, https://openalex.org/W2137541401, https://openalex.org/W2935735052, https://openalex.org/W2963539941, https://openalex.org/W200376229, https://openalex.org/W2150835912, https://openalex.org/W1532653491, https://openalex.org/W2767581383, https://openalex.org/W3103871524, https://openalex.org/W2123948245 |
| referenced_works_count | 11 |
| abstract_inverted_index.A | 143 |
| abstract_inverted_index.a | 53, 114, 133 |
| abstract_inverted_index.In | 50 |
| abstract_inverted_index.It | 112, 168 |
| abstract_inverted_index.To | 123 |
| abstract_inverted_index.an | 41 |
| abstract_inverted_index.as | 147, 149 |
| abstract_inverted_index.at | 4 |
| abstract_inverted_index.be | 89 |
| abstract_inverted_index.in | 27, 47, 178 |
| abstract_inverted_index.is | 18, 44, 64, 76, 109, 141, 169 |
| abstract_inverted_index.of | 9, 16, 21, 62, 96, 100, 127, 136, 158, 183 |
| abstract_inverted_index.on | 56, 79 |
| abstract_inverted_index.to | 154 |
| abstract_inverted_index.The | 0, 66, 98 |
| abstract_inverted_index.all | 93 |
| abstract_inverted_index.are | 152, 175 |
| abstract_inverted_index.can | 88 |
| abstract_inverted_index.for | 60, 103, 116, 163 |
| abstract_inverted_index.has | 23 |
| abstract_inverted_index.job | 144 |
| abstract_inverted_index.new | 134 |
| abstract_inverted_index.the | 6, 14, 83, 94, 101, 104, 118, 125, 128, 156, 159, 165, 172, 180 |
| abstract_inverted_index.two | 70 |
| abstract_inverted_index.aims | 3 |
| abstract_inverted_index.been | 24 |
| abstract_inverted_index.etc. | 38 |
| abstract_inverted_index.food | 32 |
| abstract_inverted_index.full | 72, 84, 105, 129 |
| abstract_inverted_index.many | 28 |
| abstract_inverted_index.such | 12, 40 |
| abstract_inverted_index.that | 13, 171 |
| abstract_inverted_index.then | 110 |
| abstract_inverted_index.this | 51, 80 |
| abstract_inverted_index.very | 176 |
| abstract_inverted_index.well | 148 |
| abstract_inverted_index.Based | 78 |
| abstract_inverted_index.Order | 20 |
| abstract_inverted_index.class | 135 |
| abstract_inverted_index.model | 108 |
| abstract_inverted_index.order | 8, 61, 182 |
| abstract_inverted_index.shown | 170 |
| abstract_inverted_index.study | 43, 55 |
| abstract_inverted_index.value | 99 |
| abstract_inverted_index.adding | 10 |
| abstract_inverted_index.areas, | 29 |
| abstract_inverted_index.design | 87 |
| abstract_inverted_index.orders | 95 |
| abstract_inverted_index.paper, | 52 |
| abstract_inverted_index.rather | 45 |
| abstract_inverted_index.widely | 25 |
| abstract_inverted_index.between | 69 |
| abstract_inverted_index.design, | 132 |
| abstract_inverted_index.designs | 59, 75, 140, 162, 174 |
| abstract_inverted_index.optimal | 7, 166, 181 |
| abstract_inverted_index.orders. | 167 |
| abstract_inverted_index.problem | 146 |
| abstract_inverted_index.studies | 151 |
| abstract_inverted_index.without | 91 |
| abstract_inverted_index.However, | 39 |
| abstract_inverted_index.addition | 22, 63 |
| abstract_inverted_index.choosing | 117 |
| abstract_inverted_index.derived. | 111 |
| abstract_inverted_index.designs. | 122 |
| abstract_inverted_index.interest | 17 |
| abstract_inverted_index.involved | 26 |
| abstract_inverted_index.obtained | 90 |
| abstract_inverted_index.ordering | 58, 74, 86, 107, 121, 131, 139, 161 |
| abstract_inverted_index.overcome | 124 |
| abstract_inverted_index.proposed | 173 |
| abstract_inverted_index.provides | 113 |
| abstract_inverted_index.relation | 68 |
| abstract_inverted_index.response | 15 |
| abstract_inverted_index.science, | 33, 35, 37 |
| abstract_inverted_index.thorough | 54 |
| abstract_inverted_index.addition. | 184 |
| abstract_inverted_index.benchmark | 115 |
| abstract_inverted_index.conducted | 153 |
| abstract_inverted_index.efficient | 177 |
| abstract_inverted_index.important | 42 |
| abstract_inverted_index.including | 30 |
| abstract_inverted_index.pair-wise | 57, 73, 85, 106, 120, 130, 138, 160 |
| abstract_inverted_index.primitive | 46 |
| abstract_inverted_index.proposed. | 142 |
| abstract_inverted_index.provided. | 65 |
| abstract_inverted_index.recursive | 67, 81 |
| abstract_inverted_index.relation, | 82 |
| abstract_inverted_index.components | 11 |
| abstract_inverted_index.developed. | 77 |
| abstract_inverted_index.evaluating | 92 |
| abstract_inverted_index.experiment | 2 |
| abstract_inverted_index.fractional | 119 |
| abstract_inverted_index.illustrate | 155 |
| abstract_inverted_index.optimized. | 19 |
| abstract_inverted_index.scheduling | 145 |
| abstract_inverted_index.simulation | 150 |
| abstract_inverted_index.successive | 71 |
| abstract_inverted_index.components. | 97 |
| abstract_inverted_index.determining | 5, 164, 179 |
| abstract_inverted_index.literature. | 49 |
| abstract_inverted_index.nutritional | 34 |
| abstract_inverted_index.performance | 157 |
| abstract_inverted_index.statistical | 48 |
| abstract_inverted_index.minimal-point | 137 |
| abstract_inverted_index.bio-chemistry, | 31 |
| abstract_inverted_index.pharmaceutical | 36 |
| abstract_inverted_index.unaffordability | 126 |
| abstract_inverted_index.order-of-addition | 1 |
| abstract_inverted_index.<i>D</i>-efficiency | 102 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5059659163 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I205237279 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.75 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.94810527 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |