Detailed analysis of PAC characteristics in ambulatory ECG data can improve atrial fibrillation risk prediction Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1093/europace/euaf085.034
Introduction Premature atrial complexes (PACs) are associated with atrial fibrillation (AF) risk, but also common in the general population. The origin and mechanism through which PACs arise lead to different electrocardiographic presentations, and may affect AF risk. We hypothesised that PAC characteristics on ambulatory ECG may predict AF, beyond PAC frequency. Methods We included 12,660 patients with 14-30 days of lead II and III ambulatory ECG recording with a Holter device, without AF during the first 48 hours of recording. We detected QRS complexes using AI and trained a convolutional neural network model to provide automated ECG waveform measurements, using >63,000 annotated heart beats. With this we extracted a total of 89 variables related PAC P-wave morphology, pattern of occurrence in relation to other beats, and PAC-QRS coupling intervals from raw ECG signals. After splitting the dataset randomly into a training (60%) and testing (40%) dataset, we used these PAC variables from the first 48h of recording in a Gaussian mixed model to generate two clusters of patients classified as having either high or low risk of AF of ≥30 seconds in the subsequent ≥12 recording days. The association between the high AF risk cluster and subsequent AF was then tested in Cox regression models, adjusted for age and sex. Results The testing dataset included 5,135 patients (median age 63 years (IQR 49-73), 59% female). AF occurred in 360 (7.0%) patients after a median duration of 7 (IQR 3-14) days. Figure 1 shows the cumulative hazard of AF by high and low risk cluster and PAC frequency. A PAC frequency >100/day was associated with higher AF risk. The high AF-risk cluster included 3,142 patients (61.1%) and had increased AF occurrence in patients with ≤100 daily PACs (62.6% of all patients), HR 1.62, 95% CI 1.03-2.54, p=0.04, but not in patients with >100 PACs (HR 0.89, 95% CI 0.63-1.26, p=0.53), p for interaction = 0.003. Conclusion Clustering analyses based on PAC morphology, pattern of occurrence and coupling interval characteristics can be used to predict AF risk in patients with ≤100 PACs/daycumulative hazards for incident AF
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/europace/euaf085.034
- https://academic.oup.com/europace/article-pdf/27/Supplement_1/euaf085.034/63304524/euaf085.034.pdf
- OA Status
- hybrid
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410697135
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410697135Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/europace/euaf085.034Digital Object Identifier
- Title
-
Detailed analysis of PAC characteristics in ambulatory ECG data can improve atrial fibrillation risk predictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-01Full publication date if available
- Authors
-
Nick L. van Vreeswijk, William F. McIntyre, Philipp Krisai, Pyotr G. Platonov, Jean-Baptiste Guichard, Elzbieta Gajewska-Dendek, Monika Kulesza, Stavros Stavrakis, Jeff S. Healey, Michiel Rienstra, Linda JohnsonList of authors in order
- Landing page
-
https://doi.org/10.1093/europace/euaf085.034Publisher landing page
- PDF URL
-
https://academic.oup.com/europace/article-pdf/27/Supplement_1/euaf085.034/63304524/euaf085.034.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/europace/article-pdf/27/Supplement_1/euaf085.034/63304524/euaf085.034.pdfDirect OA link when available
- Concepts
-
Atrial fibrillation, Ambulatory, Ambulatory ECG, Cardiology, Internal medicine, MedicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410697135 |
|---|---|
| doi | https://doi.org/10.1093/europace/euaf085.034 |
| ids.doi | https://doi.org/10.1093/europace/euaf085.034 |
| ids.openalex | https://openalex.org/W4410697135 |
| fwci | 0.0 |
| type | article |
| title | Detailed analysis of PAC characteristics in ambulatory ECG data can improve atrial fibrillation risk prediction |
| biblio.issue | Supplement_1 |
| biblio.volume | 27 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11021 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9169999957084656 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | ECG Monitoring and Analysis |
| topics[1].id | https://openalex.org/T10372 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.913100004196167 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Cardiac Imaging and Diagnostics |
| topics[2].id | https://openalex.org/T10065 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9034000039100647 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | Atrial Fibrillation Management and Outcomes |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779161974 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8001118302345276 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q815819 |
| concepts[0].display_name | Atrial fibrillation |
| concepts[1].id | https://openalex.org/C35785553 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6751240491867065 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q756720 |
| concepts[1].display_name | Ambulatory |
| concepts[2].id | https://openalex.org/C2909021529 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6731815934181213 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11490631 |
| concepts[2].display_name | Ambulatory ECG |
| concepts[3].id | https://openalex.org/C164705383 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5686890482902527 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[3].display_name | Cardiology |
| concepts[4].id | https://openalex.org/C126322002 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5175287127494812 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[4].display_name | Internal medicine |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.45054423809051514 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| keywords[0].id | https://openalex.org/keywords/atrial-fibrillation |
| keywords[0].score | 0.8001118302345276 |
| keywords[0].display_name | Atrial fibrillation |
| keywords[1].id | https://openalex.org/keywords/ambulatory |
| keywords[1].score | 0.6751240491867065 |
| keywords[1].display_name | Ambulatory |
| keywords[2].id | https://openalex.org/keywords/ambulatory-ecg |
| keywords[2].score | 0.6731815934181213 |
| keywords[2].display_name | Ambulatory ECG |
| keywords[3].id | https://openalex.org/keywords/cardiology |
| keywords[3].score | 0.5686890482902527 |
| keywords[3].display_name | Cardiology |
| keywords[4].id | https://openalex.org/keywords/internal-medicine |
| keywords[4].score | 0.5175287127494812 |
| keywords[4].display_name | Internal medicine |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.45054423809051514 |
| keywords[5].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1093/europace/euaf085.034 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S46732370 |
| locations[0].source.issn | 1099-5129, 1532-2092 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1099-5129 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | EP Europace |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648 |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://academic.oup.com/europace/article-pdf/27/Supplement_1/euaf085.034/63304524/euaf085.034.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Europace |
| locations[0].landing_page_url | https://doi.org/10.1093/europace/euaf085.034 |
| locations[1].id | pmh:oai:pubmedcentral.nih.gov:12100254 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S2764455111 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed Central |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Europace |
| locations[1].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12100254 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5098660810 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-1626-3959 |
| authorships[0].author.display_name | Nick L. van Vreeswijk |
| authorships[0].countries | NL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1334415907 |
| authorships[0].affiliations[0].raw_affiliation_string | University Medical Centre Groningen, Department of Cardiology , Groningen , |
| authorships[0].institutions[0].id | https://openalex.org/I1334415907 |
| authorships[0].institutions[0].ror | https://ror.org/03cv38k47 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I1334415907 |
| authorships[0].institutions[0].country_code | NL |
| authorships[0].institutions[0].display_name | University Medical Center Groningen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | N L Van Vreeswijk |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University Medical Centre Groningen, Department of Cardiology , Groningen , |
| authorships[1].author.id | https://openalex.org/A5058252886 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6082-7542 |
| authorships[1].author.display_name | William F. McIntyre |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I98251732 |
| authorships[1].affiliations[0].raw_affiliation_string | McMaster University , Hamilton , |
| authorships[1].institutions[0].id | https://openalex.org/I98251732 |
| authorships[1].institutions[0].ror | https://ror.org/02fa3aq29 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I98251732 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | McMaster University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | W F Mcintyre |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | McMaster University , Hamilton , |
| authorships[2].author.id | https://openalex.org/A5006643261 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4367-2363 |
| authorships[2].author.display_name | Philipp Krisai |
| authorships[2].affiliations[0].raw_affiliation_string | University Hospital Basel, Department of Cardiology , Basel , |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | P Krisai |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University Hospital Basel, Department of Cardiology , Basel , |
| authorships[3].author.id | https://openalex.org/A5044689027 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5592-8717 |
| authorships[3].author.display_name | Pyotr G. Platonov |
| authorships[3].countries | SE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I187531555 |
| authorships[3].affiliations[0].raw_affiliation_string | Lund University , Lund , |
| authorships[3].institutions[0].id | https://openalex.org/I187531555 |
| authorships[3].institutions[0].ror | https://ror.org/012a77v79 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I187531555 |
| authorships[3].institutions[0].country_code | SE |
| authorships[3].institutions[0].display_name | Lund University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | P Platonov |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Lund University , Lund , |
| authorships[4].author.id | https://openalex.org/A5071350768 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4696-7722 |
| authorships[4].author.display_name | Jean-Baptiste Guichard |
| authorships[4].countries | ES |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210115097 |
| authorships[4].affiliations[0].raw_affiliation_string | Hospital Clinic de Barcelona , Barcelona , |
| authorships[4].institutions[0].id | https://openalex.org/I4210115097 |
| authorships[4].institutions[0].ror | https://ror.org/02a2kzf50 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210115097 |
| authorships[4].institutions[0].country_code | ES |
| authorships[4].institutions[0].display_name | Hospital Clínic de Barcelona |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | J B Guichard |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Hospital Clinic de Barcelona , Barcelona , |
| authorships[5].author.id | https://openalex.org/A5091570611 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Elzbieta Gajewska-Dendek |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I873043661 |
| authorships[5].affiliations[0].raw_affiliation_string | MEDICALgorithmics , Warsaw , |
| authorships[5].institutions[0].id | https://openalex.org/I873043661 |
| authorships[5].institutions[0].ror | https://ror.org/0566s9y93 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210132346, https://openalex.org/I873043661 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Voith (United States) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | E Gajewska-Dendek |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | MEDICALgorithmics , Warsaw , |
| authorships[6].author.id | https://openalex.org/A5070199203 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5852-3723 |
| authorships[6].author.display_name | Monika Kulesza |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I873043661 |
| authorships[6].affiliations[0].raw_affiliation_string | MEDICALgorithmics , Warsaw , |
| authorships[6].institutions[0].id | https://openalex.org/I873043661 |
| authorships[6].institutions[0].ror | https://ror.org/0566s9y93 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210132346, https://openalex.org/I873043661 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Voith (United States) |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | M Kulesza |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | MEDICALgorithmics , Warsaw , |
| authorships[7].author.id | https://openalex.org/A5076287769 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-4370-8135 |
| authorships[7].author.display_name | Stavros Stavrakis |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I27253931, https://openalex.org/I8692664 |
| authorships[7].affiliations[0].raw_affiliation_string | University of Oklahoma , Oklahoma City , |
| authorships[7].institutions[0].id | https://openalex.org/I27253931 |
| authorships[7].institutions[0].ror | https://ror.org/02bs0cv29 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I27253931 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Oklahoma City University |
| authorships[7].institutions[1].id | https://openalex.org/I8692664 |
| authorships[7].institutions[1].ror | https://ror.org/02aqsxs83 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I8692664 |
| authorships[7].institutions[1].country_code | US |
| authorships[7].institutions[1].display_name | University of Oklahoma |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | S Stavrakis |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | University of Oklahoma , Oklahoma City , |
| authorships[8].author.id | https://openalex.org/A5010703194 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-1216-7580 |
| authorships[8].author.display_name | Jeff S. Healey |
| authorships[8].countries | CA |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I98251732 |
| authorships[8].affiliations[0].raw_affiliation_string | McMaster University , Hamilton , |
| authorships[8].institutions[0].id | https://openalex.org/I98251732 |
| authorships[8].institutions[0].ror | https://ror.org/02fa3aq29 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I98251732 |
| authorships[8].institutions[0].country_code | CA |
| authorships[8].institutions[0].display_name | McMaster University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | J S Healey |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | McMaster University , Hamilton , |
| authorships[9].author.id | https://openalex.org/A5064509705 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-2581-070X |
| authorships[9].author.display_name | Michiel Rienstra |
| authorships[9].countries | NL |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I1334415907 |
| authorships[9].affiliations[0].raw_affiliation_string | University Medical Centre Groningen, Department of Cardiology , Groningen , |
| authorships[9].institutions[0].id | https://openalex.org/I1334415907 |
| authorships[9].institutions[0].ror | https://ror.org/03cv38k47 |
| authorships[9].institutions[0].type | healthcare |
| authorships[9].institutions[0].lineage | https://openalex.org/I1334415907 |
| authorships[9].institutions[0].country_code | NL |
| authorships[9].institutions[0].display_name | University Medical Center Groningen |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | M Rienstra |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | University Medical Centre Groningen, Department of Cardiology , Groningen , |
| authorships[10].author.id | https://openalex.org/A5007300755 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-2249-8220 |
| authorships[10].author.display_name | Linda Johnson |
| authorships[10].countries | SE |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I187531555 |
| authorships[10].affiliations[0].raw_affiliation_string | Lund University , Lund , |
| authorships[10].institutions[0].id | https://openalex.org/I187531555 |
| authorships[10].institutions[0].ror | https://ror.org/012a77v79 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I187531555 |
| authorships[10].institutions[0].country_code | SE |
| authorships[10].institutions[0].display_name | Lund University |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | L Johnson |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Lund University , Lund , |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/europace/article-pdf/27/Supplement_1/euaf085.034/63304524/euaf085.034.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detailed analysis of PAC characteristics in ambulatory ECG data can improve atrial fibrillation risk prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11021 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9169999957084656 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | ECG Monitoring and Analysis |
| related_works | https://openalex.org/W3183948672, https://openalex.org/W3173606202, https://openalex.org/W3110381201, https://openalex.org/W2948807893, https://openalex.org/W2899084033, https://openalex.org/W2778153218, https://openalex.org/W1531601525, https://openalex.org/W2548729794, https://openalex.org/W2086342199, https://openalex.org/W2407967954 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1093/europace/euaf085.034 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S46732370 |
| best_oa_location.source.issn | 1099-5129, 1532-2092 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1099-5129 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | EP Europace |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648 |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://academic.oup.com/europace/article-pdf/27/Supplement_1/euaf085.034/63304524/euaf085.034.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Europace |
| best_oa_location.landing_page_url | https://doi.org/10.1093/europace/euaf085.034 |
| primary_location.id | doi:10.1093/europace/euaf085.034 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S46732370 |
| primary_location.source.issn | 1099-5129, 1532-2092 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1099-5129 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | EP Europace |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648 |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://academic.oup.com/europace/article-pdf/27/Supplement_1/euaf085.034/63304524/euaf085.034.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Europace |
| primary_location.landing_page_url | https://doi.org/10.1093/europace/euaf085.034 |
| publication_date | 2025-05-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.1 | 242 |
| abstract_inverted_index.7 | 237 |
| abstract_inverted_index.= | 313 |
| abstract_inverted_index.A | 258 |
| abstract_inverted_index.a | 69, 89, 109, 140, 159, 233 |
| abstract_inverted_index.p | 310 |
| abstract_inverted_index.48 | 77 |
| abstract_inverted_index.63 | 220 |
| abstract_inverted_index.89 | 112 |
| abstract_inverted_index.AF | 36, 73, 178, 193, 198, 226, 248, 266, 279, 334, 344 |
| abstract_inverted_index.AI | 86 |
| abstract_inverted_index.CI | 294, 307 |
| abstract_inverted_index.HR | 291 |
| abstract_inverted_index.II | 62 |
| abstract_inverted_index.We | 38, 53, 81 |
| abstract_inverted_index.as | 170 |
| abstract_inverted_index.be | 330 |
| abstract_inverted_index.by | 249 |
| abstract_inverted_index.in | 16, 121, 158, 182, 202, 228, 281, 299, 336 |
| abstract_inverted_index.of | 60, 79, 111, 119, 156, 167, 177, 179, 236, 247, 288, 323 |
| abstract_inverted_index.on | 43, 319 |
| abstract_inverted_index.or | 174 |
| abstract_inverted_index.to | 29, 94, 123, 163, 332 |
| abstract_inverted_index.we | 107, 147 |
| abstract_inverted_index.(HR | 304 |
| abstract_inverted_index.360 | 229 |
| abstract_inverted_index.48h | 155 |
| abstract_inverted_index.59% | 224 |
| abstract_inverted_index.95% | 293, 306 |
| abstract_inverted_index.AF, | 48 |
| abstract_inverted_index.Cox | 203 |
| abstract_inverted_index.ECG | 45, 66, 97, 132 |
| abstract_inverted_index.III | 64 |
| abstract_inverted_index.PAC | 41, 50, 115, 150, 256, 259, 320 |
| abstract_inverted_index.QRS | 83 |
| abstract_inverted_index.The | 20, 188, 212, 268 |
| abstract_inverted_index.age | 208, 219 |
| abstract_inverted_index.all | 289 |
| abstract_inverted_index.and | 22, 33, 63, 87, 126, 143, 196, 209, 251, 255, 276, 325 |
| abstract_inverted_index.are | 6 |
| abstract_inverted_index.but | 13, 297 |
| abstract_inverted_index.can | 329 |
| abstract_inverted_index.for | 207, 311, 342 |
| abstract_inverted_index.had | 277 |
| abstract_inverted_index.low | 175, 252 |
| abstract_inverted_index.may | 34, 46 |
| abstract_inverted_index.not | 298 |
| abstract_inverted_index.raw | 131 |
| abstract_inverted_index.the | 17, 75, 136, 153, 183, 191, 244 |
| abstract_inverted_index.two | 165 |
| abstract_inverted_index.was | 199, 262 |
| abstract_inverted_index.(AF) | 11 |
| abstract_inverted_index.(IQR | 222, 238 |
| abstract_inverted_index.PACs | 26, 286, 303 |
| abstract_inverted_index.With | 105 |
| abstract_inverted_index.also | 14 |
| abstract_inverted_index.days | 59 |
| abstract_inverted_index.from | 130, 152 |
| abstract_inverted_index.high | 173, 192, 250, 269 |
| abstract_inverted_index.into | 139 |
| abstract_inverted_index.lead | 28, 61 |
| abstract_inverted_index.risk | 176, 194, 253, 335 |
| abstract_inverted_index.sex. | 210 |
| abstract_inverted_index.that | 40 |
| abstract_inverted_index.then | 200 |
| abstract_inverted_index.this | 106 |
| abstract_inverted_index.used | 148, 331 |
| abstract_inverted_index.with | 8, 57, 68, 264, 283, 301, 338 |
| abstract_inverted_index.(40%) | 145 |
| abstract_inverted_index.(60%) | 142 |
| abstract_inverted_index.0.89, | 305 |
| abstract_inverted_index.1.62, | 292 |
| abstract_inverted_index.14-30 | 58 |
| abstract_inverted_index.3,142 | 273 |
| abstract_inverted_index.3-14) | 239 |
| abstract_inverted_index.5,135 | 216 |
| abstract_inverted_index.After | 134 |
| abstract_inverted_index.after | 232 |
| abstract_inverted_index.arise | 27 |
| abstract_inverted_index.based | 318 |
| abstract_inverted_index.daily | 285 |
| abstract_inverted_index.days. | 187, 240 |
| abstract_inverted_index.first | 76, 154 |
| abstract_inverted_index.heart | 103 |
| abstract_inverted_index.hours | 78 |
| abstract_inverted_index.mixed | 161 |
| abstract_inverted_index.model | 93, 162 |
| abstract_inverted_index.other | 124 |
| abstract_inverted_index.risk, | 12 |
| abstract_inverted_index.risk. | 37, 267 |
| abstract_inverted_index.shows | 243 |
| abstract_inverted_index.these | 149 |
| abstract_inverted_index.total | 110 |
| abstract_inverted_index.using | 85, 100 |
| abstract_inverted_index.which | 25 |
| abstract_inverted_index.years | 221 |
| abstract_inverted_index.≥12 | 185 |
| abstract_inverted_index.≥30 | 180 |
| abstract_inverted_index.(62.6% | 287 |
| abstract_inverted_index.(7.0%) | 230 |
| abstract_inverted_index.(PACs) | 5 |
| abstract_inverted_index.0.003. | 314 |
| abstract_inverted_index.12,660 | 55 |
| abstract_inverted_index.Figure | 241 |
| abstract_inverted_index.Holter | 70 |
| abstract_inverted_index.P-wave | 116 |
| abstract_inverted_index.affect | 35 |
| abstract_inverted_index.atrial | 3, 9 |
| abstract_inverted_index.beats, | 125 |
| abstract_inverted_index.beats. | 104 |
| abstract_inverted_index.beyond | 49 |
| abstract_inverted_index.common | 15 |
| abstract_inverted_index.during | 74 |
| abstract_inverted_index.either | 172 |
| abstract_inverted_index.having | 171 |
| abstract_inverted_index.hazard | 246 |
| abstract_inverted_index.higher | 265 |
| abstract_inverted_index.median | 234 |
| abstract_inverted_index.neural | 91 |
| abstract_inverted_index.origin | 21 |
| abstract_inverted_index.tested | 201 |
| abstract_inverted_index.≤100 | 284, 339 |
| abstract_inverted_index.(61.1%) | 275 |
| abstract_inverted_index.(median | 218 |
| abstract_inverted_index.49-73), | 223 |
| abstract_inverted_index.AF-risk | 270 |
| abstract_inverted_index.Methods | 52 |
| abstract_inverted_index.PAC-QRS | 127 |
| abstract_inverted_index.Results | 211 |
| abstract_inverted_index.between | 190 |
| abstract_inverted_index.cluster | 195, 254, 271 |
| abstract_inverted_index.dataset | 137, 214 |
| abstract_inverted_index.device, | 71 |
| abstract_inverted_index.general | 18 |
| abstract_inverted_index.hazards | 341 |
| abstract_inverted_index.models, | 205 |
| abstract_inverted_index.network | 92 |
| abstract_inverted_index.p=0.04, | 296 |
| abstract_inverted_index.pattern | 118, 322 |
| abstract_inverted_index.predict | 47, 333 |
| abstract_inverted_index.provide | 95 |
| abstract_inverted_index.related | 114 |
| abstract_inverted_index.seconds | 181 |
| abstract_inverted_index.testing | 144, 213 |
| abstract_inverted_index.through | 24 |
| abstract_inverted_index.trained | 88 |
| abstract_inverted_index.without | 72 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Gaussian | 160 |
| abstract_inverted_index.adjusted | 206 |
| abstract_inverted_index.analyses | 317 |
| abstract_inverted_index.clusters | 166 |
| abstract_inverted_index.coupling | 128, 326 |
| abstract_inverted_index.dataset, | 146 |
| abstract_inverted_index.detected | 82 |
| abstract_inverted_index.duration | 235 |
| abstract_inverted_index.female). | 225 |
| abstract_inverted_index.generate | 164 |
| abstract_inverted_index.incident | 343 |
| abstract_inverted_index.included | 54, 215, 272 |
| abstract_inverted_index.interval | 327 |
| abstract_inverted_index.occurred | 227 |
| abstract_inverted_index.p=0.53), | 309 |
| abstract_inverted_index.patients | 56, 168, 217, 231, 274, 282, 300, 337 |
| abstract_inverted_index.randomly | 138 |
| abstract_inverted_index.relation | 122 |
| abstract_inverted_index.signals. | 133 |
| abstract_inverted_index.training | 141 |
| abstract_inverted_index.waveform | 98 |
| abstract_inverted_index.Premature | 2 |
| abstract_inverted_index.annotated | 102 |
| abstract_inverted_index.automated | 96 |
| abstract_inverted_index.complexes | 4, 84 |
| abstract_inverted_index.different | 30 |
| abstract_inverted_index.extracted | 108 |
| abstract_inverted_index.frequency | 260 |
| abstract_inverted_index.increased | 278 |
| abstract_inverted_index.intervals | 129 |
| abstract_inverted_index.mechanism | 23 |
| abstract_inverted_index.recording | 67, 157, 186 |
| abstract_inverted_index.splitting | 135 |
| abstract_inverted_index.variables | 113, 151 |
| abstract_inverted_index.0.63-1.26, | 308 |
| abstract_inverted_index.1.03-2.54, | 295 |
| abstract_inverted_index.Clustering | 316 |
| abstract_inverted_index.Conclusion | 315 |
| abstract_inverted_index.ambulatory | 44, 65 |
| abstract_inverted_index.associated | 7, 263 |
| abstract_inverted_index.classified | 169 |
| abstract_inverted_index.cumulative | 245 |
| abstract_inverted_index.frequency. | 51, 257 |
| abstract_inverted_index.occurrence | 120, 280, 324 |
| abstract_inverted_index.patients), | 290 |
| abstract_inverted_index.recording. | 80 |
| abstract_inverted_index.regression | 204 |
| abstract_inverted_index.subsequent | 184, 197 |
| abstract_inverted_index.>100 | 302 |
| abstract_inverted_index.association | 189 |
| abstract_inverted_index.interaction | 312 |
| abstract_inverted_index.morphology, | 117, 321 |
| abstract_inverted_index.population. | 19 |
| abstract_inverted_index.Introduction | 1 |
| abstract_inverted_index.fibrillation | 10 |
| abstract_inverted_index.hypothesised | 39 |
| abstract_inverted_index.convolutional | 90 |
| abstract_inverted_index.measurements, | 99 |
| abstract_inverted_index.>63,000 | 101 |
| abstract_inverted_index.presentations, | 32 |
| abstract_inverted_index.>100/day | 261 |
| abstract_inverted_index.characteristics | 42, 328 |
| abstract_inverted_index.PACs/daycumulative | 340 |
| abstract_inverted_index.electrocardiographic | 31 |
| cited_by_percentile_year | |
| countries_distinct_count | 5 |
| institutions_distinct_count | 11 |
| citation_normalized_percentile.value | 0.31527694 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |