Detecting and Handling WoT Violations by Learning Physical Interactions from Device Logs Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1145/3715743
The Web of Things (WoT) system standardizes the integration of ubiquitous IoT devices in physical environments, enabling various software applications to automatically sense and regulate the physical environment. While providing convenience, the complex interactions among software applications and physical environment make the WoT system vulnerable to violations caused by improper actuator operations, which may cause undesirable or even harmful results, posing serious risks to user safety and security. In response to this critical concern, many previous efforts have be made. However, existing works primarily focus on analyzing software application behaviors, with insufficient consideration of the physical interactions, multi-source violations, and environmental dynamics in such ubiquitous software systems. As a result, they fail to comprehensively detect the impact of actuator operations on the dynamic environment, thus limiting their effectiveness. To address these limitations, we propose SysGuard, a violation detecting and handling approach. SysGuard employs the dynamic probabilistic graphical model (DPGM) to model the physical interactions as the physical interaction graph (PIG). In the offline phase, SysGuard takes device description models and history device logs as input to capture physical interactions by learning the PIG. In this process, a large language model (LLM) based causal analysis method is further introduced to filter out the device dependencies unrelated to physical interaction by analyzing the device interaction scenarios recorded in device logs. In the online phase, SysGuard processes user-customized violation rules, and monitors runtime device logs to predict violation states and generates handling policies by inferring the PIG. Evaluation on two real-world WoT systems shows that SysGuard significantly outperforms existing state-of-the-art works, achieving high performance in both violation detection and handling. It also confirms the runtime efficiency and scalability of SysGuard. Ablation experiment on our constructed dataset demonstrates that the LLM-based causal analysis significantly improves the performance of SysGuard, with the accuracy increasing in both violation detecting and handling.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3715743
- OA Status
- hybrid
- References
- 51
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411449992
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411449992Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3715743Digital Object Identifier
- Title
-
Detecting and Handling WoT Violations by Learning Physical Interactions from Device LogsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-19Full publication date if available
- Authors
-
Bingkun Sun, Shihua Sun, Jialin Ren, Mingming Hu, Kun Hu, Liwei Shen, Xin PengList of authors in order
- Landing page
-
https://doi.org/10.1145/3715743Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1145/3715743Direct OA link when available
- Concepts
-
Computer science, Software, Process (computing), Cyber-physical system, Human–computer interaction, Web of Things, Probabilistic logic, Ubiquitous computing, Computer security, Distributed computing, Artificial intelligence, Internet of Things, Operating system, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
51Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411449992 |
|---|---|
| doi | https://doi.org/10.1145/3715743 |
| ids.doi | https://doi.org/10.1145/3715743 |
| ids.openalex | https://openalex.org/W4411449992 |
| fwci | 0.0 |
| type | article |
| title | Detecting and Handling WoT Violations by Learning Physical Interactions from Device Logs |
| awards[0].id | https://openalex.org/G8012045987 |
| awards[0].funder_id | https://openalex.org/F4320335777 |
| awards[0].display_name | |
| awards[0].funder_award_id | No.2022YFB4501803 |
| awards[0].funder_display_name | National Key Research and Development Program of China |
| biblio.issue | FSE |
| biblio.volume | 2 |
| biblio.last_page | 622 |
| biblio.first_page | 599 |
| topics[0].id | https://openalex.org/T12127 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9977999925613403 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Software System Performance and Reliability |
| topics[1].id | https://openalex.org/T10273 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9972000122070312 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | IoT and Edge/Fog Computing |
| topics[2].id | https://openalex.org/T10444 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.996999979019165 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Context-Aware Activity Recognition Systems |
| funders[0].id | https://openalex.org/F4320335777 |
| funders[0].ror | |
| funders[0].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7205474376678467 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2777904410 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5439415574073792 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[1].display_name | Software |
| concepts[2].id | https://openalex.org/C98045186 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5341545343399048 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[2].display_name | Process (computing) |
| concepts[3].id | https://openalex.org/C179768478 |
| concepts[3].level | 2 |
| concepts[3].score | 0.511489987373352 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1120057 |
| concepts[3].display_name | Cyber-physical system |
| concepts[4].id | https://openalex.org/C107457646 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5058762431144714 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[4].display_name | Human–computer interaction |
| concepts[5].id | https://openalex.org/C95349148 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4914780855178833 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2814098 |
| concepts[5].display_name | Web of Things |
| concepts[6].id | https://openalex.org/C49937458 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4253383278846741 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[6].display_name | Probabilistic logic |
| concepts[7].id | https://openalex.org/C172195944 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4164084196090698 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q541265 |
| concepts[7].display_name | Ubiquitous computing |
| concepts[8].id | https://openalex.org/C38652104 |
| concepts[8].level | 1 |
| concepts[8].score | 0.35551267862319946 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[8].display_name | Computer security |
| concepts[9].id | https://openalex.org/C120314980 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3273496627807617 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[9].display_name | Distributed computing |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2737846374511719 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C81860439 |
| concepts[11].level | 2 |
| concepts[11].score | 0.21687409281730652 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q251212 |
| concepts[11].display_name | Internet of Things |
| concepts[12].id | https://openalex.org/C111919701 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[12].display_name | Operating system |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7205474376678467 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/software |
| keywords[1].score | 0.5439415574073792 |
| keywords[1].display_name | Software |
| keywords[2].id | https://openalex.org/keywords/process |
| keywords[2].score | 0.5341545343399048 |
| keywords[2].display_name | Process (computing) |
| keywords[3].id | https://openalex.org/keywords/cyber-physical-system |
| keywords[3].score | 0.511489987373352 |
| keywords[3].display_name | Cyber-physical system |
| keywords[4].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[4].score | 0.5058762431144714 |
| keywords[4].display_name | Human–computer interaction |
| keywords[5].id | https://openalex.org/keywords/web-of-things |
| keywords[5].score | 0.4914780855178833 |
| keywords[5].display_name | Web of Things |
| keywords[6].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[6].score | 0.4253383278846741 |
| keywords[6].display_name | Probabilistic logic |
| keywords[7].id | https://openalex.org/keywords/ubiquitous-computing |
| keywords[7].score | 0.4164084196090698 |
| keywords[7].display_name | Ubiquitous computing |
| keywords[8].id | https://openalex.org/keywords/computer-security |
| keywords[8].score | 0.35551267862319946 |
| keywords[8].display_name | Computer security |
| keywords[9].id | https://openalex.org/keywords/distributed-computing |
| keywords[9].score | 0.3273496627807617 |
| keywords[9].display_name | Distributed computing |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.2737846374511719 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/internet-of-things |
| keywords[11].score | 0.21687409281730652 |
| keywords[11].display_name | Internet of Things |
| language | en |
| locations[0].id | doi:10.1145/3715743 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4404663975 |
| locations[0].source.issn | 2994-970X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2994-970X |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the ACM on software engineering. |
| locations[0].source.host_organization | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_name | Association for Computing Machinery |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_lineage_names | Association for Computing Machinery |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the ACM on Software Engineering |
| locations[0].landing_page_url | https://doi.org/10.1145/3715743 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5051538796 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2264-5729 |
| authorships[0].author.display_name | Bingkun Sun |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I24943067 |
| authorships[0].affiliations[0].raw_affiliation_string | Fudan University, Shanghai, China |
| authorships[0].institutions[0].id | https://openalex.org/I24943067 |
| authorships[0].institutions[0].ror | https://ror.org/013q1eq08 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I24943067 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Fudan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bingkun Sun |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Fudan University, Shanghai, China |
| authorships[1].author.id | https://openalex.org/A5113291967 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shihua Sun |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I17145004 |
| authorships[1].affiliations[0].raw_affiliation_string | Northwestern Polytechnique University, Xi'an, China |
| authorships[1].institutions[0].id | https://openalex.org/I17145004 |
| authorships[1].institutions[0].ror | https://ror.org/01y0j0j86 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I17145004 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Northwestern Polytechnical University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shiqi Sun |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Northwestern Polytechnique University, Xi'an, China |
| authorships[2].author.id | https://openalex.org/A5101310056 |
| authorships[2].author.orcid | https://orcid.org/0009-0006-3380-6811 |
| authorships[2].author.display_name | Jialin Ren |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I24943067 |
| authorships[2].affiliations[0].raw_affiliation_string | Fudan University, Shanghai, China |
| authorships[2].institutions[0].id | https://openalex.org/I24943067 |
| authorships[2].institutions[0].ror | https://ror.org/013q1eq08 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I24943067 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Fudan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jialin Ren |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Fudan University, Shanghai, China |
| authorships[3].author.id | https://openalex.org/A5067603944 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Mingming Hu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I24943067 |
| authorships[3].affiliations[0].raw_affiliation_string | Fudan University, Shanghai, China |
| authorships[3].institutions[0].id | https://openalex.org/I24943067 |
| authorships[3].institutions[0].ror | https://ror.org/013q1eq08 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I24943067 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Fudan University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mingming Hu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Fudan University, Shanghai, China |
| authorships[4].author.id | https://openalex.org/A5100668925 |
| authorships[4].author.orcid | https://orcid.org/0009-0009-0378-4369 |
| authorships[4].author.display_name | Kun Hu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I24943067 |
| authorships[4].affiliations[0].raw_affiliation_string | Fudan University, Shanghai, China |
| authorships[4].institutions[0].id | https://openalex.org/I24943067 |
| authorships[4].institutions[0].ror | https://ror.org/013q1eq08 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I24943067 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Fudan University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kun Hu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Fudan University, Shanghai, China |
| authorships[5].author.id | https://openalex.org/A5101551643 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8107-0590 |
| authorships[5].author.display_name | Liwei Shen |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I24943067 |
| authorships[5].affiliations[0].raw_affiliation_string | Fudan University, Shanghai, China |
| authorships[5].institutions[0].id | https://openalex.org/I24943067 |
| authorships[5].institutions[0].ror | https://ror.org/013q1eq08 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I24943067 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Fudan University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Liwei Shen |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Fudan University, Shanghai, China |
| authorships[6].author.id | https://openalex.org/A5101854992 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3376-2581 |
| authorships[6].author.display_name | Xin Peng |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I24943067 |
| authorships[6].affiliations[0].raw_affiliation_string | Fudan University, Shanghai, China |
| authorships[6].institutions[0].id | https://openalex.org/I24943067 |
| authorships[6].institutions[0].ror | https://ror.org/013q1eq08 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I24943067 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Fudan University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Xin Peng |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Fudan University, Shanghai, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1145/3715743 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detecting and Handling WoT Violations by Learning Physical Interactions from Device Logs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12127 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9977999925613403 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Software System Performance and Reliability |
| related_works | https://openalex.org/W2587516463, https://openalex.org/W3004173571, https://openalex.org/W3019776739, https://openalex.org/W2546638913, https://openalex.org/W2209816623, https://openalex.org/W2968885840, https://openalex.org/W3135700974, https://openalex.org/W4313307484, https://openalex.org/W2791379413, https://openalex.org/W1569155942 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3715743 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4404663975 |
| best_oa_location.source.issn | 2994-970X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2994-970X |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the ACM on software engineering. |
| best_oa_location.source.host_organization | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_name | Association for Computing Machinery |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_lineage_names | Association for Computing Machinery |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the ACM on Software Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3715743 |
| primary_location.id | doi:10.1145/3715743 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4404663975 |
| primary_location.source.issn | 2994-970X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2994-970X |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the ACM on software engineering. |
| primary_location.source.host_organization | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_name | Association for Computing Machinery |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_lineage_names | Association for Computing Machinery |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the ACM on Software Engineering |
| primary_location.landing_page_url | https://doi.org/10.1145/3715743 |
| publication_date | 2025-06-19 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4400314859, https://openalex.org/W4285163447, https://openalex.org/W4388000103, https://openalex.org/W2801040906, https://openalex.org/W4384154477, https://openalex.org/W2947175569, https://openalex.org/W4401719631, https://openalex.org/W3003250548, https://openalex.org/W3046246673, https://openalex.org/W2015200434, https://openalex.org/W1987522330, https://openalex.org/W2890188242, https://openalex.org/W3136780060, https://openalex.org/W2022077643, https://openalex.org/W4205396493, https://openalex.org/W2618817116, https://openalex.org/W2785733830, https://openalex.org/W2911962130, https://openalex.org/W3213909818, https://openalex.org/W4400409666, https://openalex.org/W4328028543, https://openalex.org/W4392503799, https://openalex.org/W4399699442, https://openalex.org/W2519460064, https://openalex.org/W2941876953, https://openalex.org/W2898017895, https://openalex.org/W2784466664, https://openalex.org/W2770057444, https://openalex.org/W2054137409, https://openalex.org/W2896143299, https://openalex.org/W2142925340, https://openalex.org/W4392905183, https://openalex.org/W2076396344, https://openalex.org/W4319986426, https://openalex.org/W4388488609, https://openalex.org/W4393972928, https://openalex.org/W4367046945, https://openalex.org/W1497385253, https://openalex.org/W6893711297, https://openalex.org/W2740038983, https://openalex.org/W2399248522, https://openalex.org/W4293052541, https://openalex.org/W2983277367, https://openalex.org/W3010644598, https://openalex.org/W2946994514, https://openalex.org/W3203006893, https://openalex.org/W4386858792, https://openalex.org/W2953940064, https://openalex.org/W2350778671, https://openalex.org/W1511986666, https://openalex.org/W2775293244 |
| referenced_works_count | 51 |
| abstract_inverted_index.a | 108, 135, 186 |
| abstract_inverted_index.As | 107 |
| abstract_inverted_index.In | 68, 160, 183, 218 |
| abstract_inverted_index.It | 267 |
| abstract_inverted_index.To | 128 |
| abstract_inverted_index.as | 154, 173 |
| abstract_inverted_index.be | 78 |
| abstract_inverted_index.by | 48, 179, 208, 240 |
| abstract_inverted_index.in | 13, 102, 215, 261, 299 |
| abstract_inverted_index.is | 195 |
| abstract_inverted_index.of | 2, 9, 93, 117, 275, 293 |
| abstract_inverted_index.on | 85, 120, 245, 279 |
| abstract_inverted_index.or | 56 |
| abstract_inverted_index.to | 20, 45, 63, 70, 112, 149, 175, 198, 205, 232 |
| abstract_inverted_index.we | 132 |
| abstract_inverted_index.IoT | 11 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.Web | 1 |
| abstract_inverted_index.WoT | 42, 248 |
| abstract_inverted_index.and | 23, 37, 66, 99, 138, 169, 227, 236, 265, 273, 303 |
| abstract_inverted_index.may | 53 |
| abstract_inverted_index.our | 280 |
| abstract_inverted_index.out | 200 |
| abstract_inverted_index.the | 7, 25, 31, 41, 94, 115, 121, 143, 151, 155, 161, 181, 201, 210, 219, 242, 270, 285, 291, 296 |
| abstract_inverted_index.two | 246 |
| abstract_inverted_index.PIG. | 182, 243 |
| abstract_inverted_index.also | 268 |
| abstract_inverted_index.both | 262, 300 |
| abstract_inverted_index.even | 57 |
| abstract_inverted_index.fail | 111 |
| abstract_inverted_index.have | 77 |
| abstract_inverted_index.high | 259 |
| abstract_inverted_index.logs | 172, 231 |
| abstract_inverted_index.make | 40 |
| abstract_inverted_index.many | 74 |
| abstract_inverted_index.such | 103 |
| abstract_inverted_index.that | 251, 284 |
| abstract_inverted_index.they | 110 |
| abstract_inverted_index.this | 71, 184 |
| abstract_inverted_index.thus | 124 |
| abstract_inverted_index.user | 64 |
| abstract_inverted_index.with | 90, 295 |
| abstract_inverted_index.(LLM) | 190 |
| abstract_inverted_index.(WoT) | 4 |
| abstract_inverted_index.While | 28 |
| abstract_inverted_index.among | 34 |
| abstract_inverted_index.based | 191 |
| abstract_inverted_index.cause | 54 |
| abstract_inverted_index.focus | 84 |
| abstract_inverted_index.graph | 158 |
| abstract_inverted_index.input | 174 |
| abstract_inverted_index.large | 187 |
| abstract_inverted_index.logs. | 217 |
| abstract_inverted_index.made. | 79 |
| abstract_inverted_index.model | 147, 150, 189 |
| abstract_inverted_index.risks | 62 |
| abstract_inverted_index.sense | 22 |
| abstract_inverted_index.shows | 250 |
| abstract_inverted_index.takes | 165 |
| abstract_inverted_index.their | 126 |
| abstract_inverted_index.these | 130 |
| abstract_inverted_index.which | 52 |
| abstract_inverted_index.works | 82 |
| abstract_inverted_index.(DPGM) | 148 |
| abstract_inverted_index.(PIG). | 159 |
| abstract_inverted_index.Things | 3 |
| abstract_inverted_index.causal | 192, 287 |
| abstract_inverted_index.caused | 47 |
| abstract_inverted_index.detect | 114 |
| abstract_inverted_index.device | 166, 171, 202, 211, 216, 230 |
| abstract_inverted_index.filter | 199 |
| abstract_inverted_index.impact | 116 |
| abstract_inverted_index.method | 194 |
| abstract_inverted_index.models | 168 |
| abstract_inverted_index.online | 220 |
| abstract_inverted_index.phase, | 163, 221 |
| abstract_inverted_index.posing | 60 |
| abstract_inverted_index.rules, | 226 |
| abstract_inverted_index.safety | 65 |
| abstract_inverted_index.states | 235 |
| abstract_inverted_index.system | 5, 43 |
| abstract_inverted_index.works, | 257 |
| abstract_inverted_index.address | 129 |
| abstract_inverted_index.capture | 176 |
| abstract_inverted_index.complex | 32 |
| abstract_inverted_index.dataset | 282 |
| abstract_inverted_index.devices | 12 |
| abstract_inverted_index.dynamic | 122, 144 |
| abstract_inverted_index.efforts | 76 |
| abstract_inverted_index.employs | 142 |
| abstract_inverted_index.further | 196 |
| abstract_inverted_index.harmful | 58 |
| abstract_inverted_index.history | 170 |
| abstract_inverted_index.offline | 162 |
| abstract_inverted_index.predict | 233 |
| abstract_inverted_index.propose | 133 |
| abstract_inverted_index.result, | 109 |
| abstract_inverted_index.runtime | 229, 271 |
| abstract_inverted_index.serious | 61 |
| abstract_inverted_index.systems | 249 |
| abstract_inverted_index.various | 17 |
| abstract_inverted_index.Ablation | 277 |
| abstract_inverted_index.However, | 80 |
| abstract_inverted_index.SysGuard | 141, 164, 222, 252 |
| abstract_inverted_index.accuracy | 297 |
| abstract_inverted_index.actuator | 50, 118 |
| abstract_inverted_index.analysis | 193, 288 |
| abstract_inverted_index.concern, | 73 |
| abstract_inverted_index.confirms | 269 |
| abstract_inverted_index.critical | 72 |
| abstract_inverted_index.dynamics | 101 |
| abstract_inverted_index.enabling | 16 |
| abstract_inverted_index.existing | 81, 255 |
| abstract_inverted_index.handling | 139, 238 |
| abstract_inverted_index.improper | 49 |
| abstract_inverted_index.improves | 290 |
| abstract_inverted_index.language | 188 |
| abstract_inverted_index.learning | 180 |
| abstract_inverted_index.limiting | 125 |
| abstract_inverted_index.monitors | 228 |
| abstract_inverted_index.physical | 14, 26, 38, 95, 152, 156, 177, 206 |
| abstract_inverted_index.policies | 239 |
| abstract_inverted_index.previous | 75 |
| abstract_inverted_index.process, | 185 |
| abstract_inverted_index.recorded | 214 |
| abstract_inverted_index.regulate | 24 |
| abstract_inverted_index.response | 69 |
| abstract_inverted_index.results, | 59 |
| abstract_inverted_index.software | 18, 35, 87, 105 |
| abstract_inverted_index.systems. | 106 |
| abstract_inverted_index.LLM-based | 286 |
| abstract_inverted_index.SysGuard, | 134, 294 |
| abstract_inverted_index.SysGuard. | 276 |
| abstract_inverted_index.achieving | 258 |
| abstract_inverted_index.analyzing | 86, 209 |
| abstract_inverted_index.approach. | 140 |
| abstract_inverted_index.detecting | 137, 302 |
| abstract_inverted_index.detection | 264 |
| abstract_inverted_index.generates | 237 |
| abstract_inverted_index.graphical | 146 |
| abstract_inverted_index.handling. | 266, 304 |
| abstract_inverted_index.inferring | 241 |
| abstract_inverted_index.primarily | 83 |
| abstract_inverted_index.processes | 223 |
| abstract_inverted_index.providing | 29 |
| abstract_inverted_index.scenarios | 213 |
| abstract_inverted_index.security. | 67 |
| abstract_inverted_index.unrelated | 204 |
| abstract_inverted_index.violation | 136, 225, 234, 263, 301 |
| abstract_inverted_index.Evaluation | 244 |
| abstract_inverted_index.behaviors, | 89 |
| abstract_inverted_index.efficiency | 272 |
| abstract_inverted_index.experiment | 278 |
| abstract_inverted_index.increasing | 298 |
| abstract_inverted_index.introduced | 197 |
| abstract_inverted_index.operations | 119 |
| abstract_inverted_index.real-world | 247 |
| abstract_inverted_index.ubiquitous | 10, 104 |
| abstract_inverted_index.violations | 46 |
| abstract_inverted_index.vulnerable | 44 |
| abstract_inverted_index.application | 88 |
| abstract_inverted_index.constructed | 281 |
| abstract_inverted_index.description | 167 |
| abstract_inverted_index.environment | 39 |
| abstract_inverted_index.integration | 8 |
| abstract_inverted_index.interaction | 157, 207, 212 |
| abstract_inverted_index.operations, | 51 |
| abstract_inverted_index.outperforms | 254 |
| abstract_inverted_index.performance | 260, 292 |
| abstract_inverted_index.scalability | 274 |
| abstract_inverted_index.undesirable | 55 |
| abstract_inverted_index.violations, | 98 |
| abstract_inverted_index.applications | 19, 36 |
| abstract_inverted_index.convenience, | 30 |
| abstract_inverted_index.demonstrates | 283 |
| abstract_inverted_index.dependencies | 203 |
| abstract_inverted_index.environment, | 123 |
| abstract_inverted_index.environment. | 27 |
| abstract_inverted_index.insufficient | 91 |
| abstract_inverted_index.interactions | 33, 153, 178 |
| abstract_inverted_index.limitations, | 131 |
| abstract_inverted_index.multi-source | 97 |
| abstract_inverted_index.standardizes | 6 |
| abstract_inverted_index.automatically | 21 |
| abstract_inverted_index.consideration | 92 |
| abstract_inverted_index.environmental | 100 |
| abstract_inverted_index.environments, | 15 |
| abstract_inverted_index.interactions, | 96 |
| abstract_inverted_index.probabilistic | 145 |
| abstract_inverted_index.significantly | 253, 289 |
| abstract_inverted_index.effectiveness. | 127 |
| abstract_inverted_index.comprehensively | 113 |
| abstract_inverted_index.user-customized | 224 |
| abstract_inverted_index.state-of-the-art | 256 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.26481113 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |