Detecting and Recognizing Human-Object Interactions Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1704.07333
To understand the visual world, a machine must not only recognize individual object instances but also how they interact. Humans are often at the center of such interactions and detecting human-object interactions is an important practical and scientific problem. In this paper, we address the task of detecting triplets in challenging everyday photos. We propose a novel model that is driven by a human-centric approach. Our hypothesis is that the appearance of a person -- their pose, clothing, action -- is a powerful cue for localizing the objects they are interacting with. To exploit this cue, our model learns to predict an action-specific density over target object locations based on the appearance of a detected person. Our model also jointly learns to detect people and objects, and by fusing these predictions it efficiently infers interaction triplets in a clean, jointly trained end-to-end system we call InteractNet. We validate our approach on the recently introduced Verbs in COCO (V-COCO) and HICO-DET datasets, where we show quantitatively compelling results.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1704.07333
- https://arxiv.org/pdf/1704.07333
- OA Status
- green
- Cited By
- 60
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2608915011
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2608915011Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1704.07333Digital Object Identifier
- Title
-
Detecting and Recognizing Human-Object InteractionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-04-24Full publication date if available
- Authors
-
Georgia Gkioxari, Ross Girshick, Piotr Dollár, Kaiming HeList of authors in order
- Landing page
-
https://arxiv.org/abs/1704.07333Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1704.07333Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1704.07333Direct OA link when available
- Concepts
-
Computer science, Object (grammar), Artificial intelligence, Action (physics), Task (project management), Exploit, Machine learning, Computer vision, Computer security, Physics, Economics, Management, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
60Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 5, 2023: 8, 2022: 4, 2021: 10Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2608915011 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1704.07333 |
| ids.doi | https://doi.org/10.48550/arxiv.1704.07333 |
| ids.mag | 2608915011 |
| ids.openalex | https://openalex.org/W2608915011 |
| fwci | |
| type | preprint |
| title | Detecting and Recognizing Human-Object Interactions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T10812 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9990000128746033 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Human Pose and Action Recognition |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9958999752998352 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8161883354187012 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2781238097 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7631037831306458 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[1].display_name | Object (grammar) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7186956405639648 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2780791683 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7017306089401245 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q846785 |
| concepts[3].display_name | Action (physics) |
| concepts[4].id | https://openalex.org/C2780451532 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5955501794815063 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[4].display_name | Task (project management) |
| concepts[5].id | https://openalex.org/C165696696 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5568349957466125 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[5].display_name | Exploit |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.38616129755973816 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.33412444591522217 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C38652104 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[8].display_name | Computer security |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C162324750 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[10].display_name | Economics |
| concepts[11].id | https://openalex.org/C187736073 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[11].display_name | Management |
| concepts[12].id | https://openalex.org/C62520636 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[12].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8161883354187012 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/object |
| keywords[1].score | 0.7631037831306458 |
| keywords[1].display_name | Object (grammar) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7186956405639648 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/action |
| keywords[3].score | 0.7017306089401245 |
| keywords[3].display_name | Action (physics) |
| keywords[4].id | https://openalex.org/keywords/task |
| keywords[4].score | 0.5955501794815063 |
| keywords[4].display_name | Task (project management) |
| keywords[5].id | https://openalex.org/keywords/exploit |
| keywords[5].score | 0.5568349957466125 |
| keywords[5].display_name | Exploit |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.38616129755973816 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.33412444591522217 |
| keywords[7].display_name | Computer vision |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1704.07333 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1704.07333 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1704.07333 |
| locations[1].id | doi:10.48550/arxiv.1704.07333 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1704.07333 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5014407395 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Georgia Gkioxari |
| authorships[0].countries | IL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2252078561 |
| authorships[0].affiliations[0].raw_affiliation_string | Facebook AI Research (FAIR) |
| authorships[0].institutions[0].id | https://openalex.org/I2252078561 |
| authorships[0].institutions[0].ror | https://ror.org/02388em19 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I2252078561, https://openalex.org/I4210114444 |
| authorships[0].institutions[0].country_code | IL |
| authorships[0].institutions[0].display_name | Meta (Israel) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Georgia Gkioxari |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Facebook AI Research (FAIR) |
| authorships[1].author.id | https://openalex.org/A5049246408 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ross Girshick |
| authorships[1].countries | IL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2252078561 |
| authorships[1].affiliations[0].raw_affiliation_string | Facebook AI Research (FAIR) |
| authorships[1].institutions[0].id | https://openalex.org/I2252078561 |
| authorships[1].institutions[0].ror | https://ror.org/02388em19 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I2252078561, https://openalex.org/I4210114444 |
| authorships[1].institutions[0].country_code | IL |
| authorships[1].institutions[0].display_name | Meta (Israel) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ross Girshick |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Facebook AI Research (FAIR) |
| authorships[2].author.id | https://openalex.org/A5057866698 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Piotr Dollár |
| authorships[2].countries | IL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2252078561 |
| authorships[2].affiliations[0].raw_affiliation_string | Facebook AI Research (FAIR) |
| authorships[2].institutions[0].id | https://openalex.org/I2252078561 |
| authorships[2].institutions[0].ror | https://ror.org/02388em19 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I2252078561, https://openalex.org/I4210114444 |
| authorships[2].institutions[0].country_code | IL |
| authorships[2].institutions[0].display_name | Meta (Israel) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Piotr Dollár |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Facebook AI Research (FAIR) |
| authorships[3].author.id | https://openalex.org/A5100700361 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7318-9658 |
| authorships[3].author.display_name | Kaiming He |
| authorships[3].countries | IL |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2252078561 |
| authorships[3].affiliations[0].raw_affiliation_string | Facebook AI Research (FAIR) |
| authorships[3].institutions[0].id | https://openalex.org/I2252078561 |
| authorships[3].institutions[0].ror | https://ror.org/02388em19 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I2252078561, https://openalex.org/I4210114444 |
| authorships[3].institutions[0].country_code | IL |
| authorships[3].institutions[0].display_name | Meta (Israel) |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Kaiming He |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Facebook AI Research (FAIR) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1704.07333 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detecting and Recognizing Human-Object Interactions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W17155033, https://openalex.org/W3207760230, https://openalex.org/W1496222301, https://openalex.org/W1590307681, https://openalex.org/W2536018345, https://openalex.org/W4312814274, https://openalex.org/W2604548540, https://openalex.org/W2732813147, https://openalex.org/W2143460112, https://openalex.org/W2042906257 |
| cited_by_count | 60 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 8 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 4 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 10 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 10 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 17 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 2 |
| counts_by_year[8].year | 2017 |
| counts_by_year[8].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1704.07333 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1704.07333 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1704.07333 |
| primary_location.id | pmh:oai:arXiv.org:1704.07333 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1704.07333 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1704.07333 |
| publication_date | 2017-04-24 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2950179405, https://openalex.org/W1892016050, https://openalex.org/W2049705550, https://openalex.org/W2169393274, https://openalex.org/W1579853615, https://openalex.org/W2406587685, https://openalex.org/W1861492603, https://openalex.org/W2953238423, https://openalex.org/W2949533892, https://openalex.org/W2949650786, https://openalex.org/W1551928752, https://openalex.org/W2962835968, https://openalex.org/W2179352600, https://openalex.org/W2423576022, https://openalex.org/W2046589395, https://openalex.org/W2952997040, https://openalex.org/W2951548327, https://openalex.org/W2951638509, https://openalex.org/W2953106684, https://openalex.org/W2339712187, https://openalex.org/W2214124602, https://openalex.org/W2950209802, https://openalex.org/W2147800946, https://openalex.org/W2108598243, https://openalex.org/W2014788385, https://openalex.org/W960165457, https://openalex.org/W2591649037, https://openalex.org/W2255781698 |
| referenced_works_count | 28 |
| abstract_inverted_index.a | 5, 55, 62, 72, 81, 113, 137 |
| abstract_inverted_index.-- | 74, 79 |
| abstract_inverted_index.In | 39 |
| abstract_inverted_index.To | 0, 92 |
| abstract_inverted_index.We | 53, 146 |
| abstract_inverted_index.an | 33, 101 |
| abstract_inverted_index.at | 22 |
| abstract_inverted_index.by | 61, 127 |
| abstract_inverted_index.in | 49, 136, 155 |
| abstract_inverted_index.is | 32, 59, 67, 80 |
| abstract_inverted_index.it | 131 |
| abstract_inverted_index.of | 25, 46, 71, 112 |
| abstract_inverted_index.on | 109, 150 |
| abstract_inverted_index.to | 99, 121 |
| abstract_inverted_index.we | 42, 143, 162 |
| abstract_inverted_index.Our | 65, 116 |
| abstract_inverted_index.and | 28, 36, 124, 126, 158 |
| abstract_inverted_index.are | 20, 89 |
| abstract_inverted_index.but | 14 |
| abstract_inverted_index.cue | 83 |
| abstract_inverted_index.for | 84 |
| abstract_inverted_index.how | 16 |
| abstract_inverted_index.not | 8 |
| abstract_inverted_index.our | 96, 148 |
| abstract_inverted_index.the | 2, 23, 44, 69, 86, 110, 151 |
| abstract_inverted_index.COCO | 156 |
| abstract_inverted_index.also | 15, 118 |
| abstract_inverted_index.call | 144 |
| abstract_inverted_index.cue, | 95 |
| abstract_inverted_index.must | 7 |
| abstract_inverted_index.only | 9 |
| abstract_inverted_index.over | 104 |
| abstract_inverted_index.show | 163 |
| abstract_inverted_index.such | 26 |
| abstract_inverted_index.task | 45 |
| abstract_inverted_index.that | 58, 68 |
| abstract_inverted_index.they | 17, 88 |
| abstract_inverted_index.this | 40, 94 |
| abstract_inverted_index.Verbs | 154 |
| abstract_inverted_index.based | 108 |
| abstract_inverted_index.model | 57, 97, 117 |
| abstract_inverted_index.novel | 56 |
| abstract_inverted_index.often | 21 |
| abstract_inverted_index.pose, | 76 |
| abstract_inverted_index.their | 75 |
| abstract_inverted_index.these | 129 |
| abstract_inverted_index.where | 161 |
| abstract_inverted_index.with. | 91 |
| abstract_inverted_index.Humans | 19 |
| abstract_inverted_index.action | 78 |
| abstract_inverted_index.center | 24 |
| abstract_inverted_index.clean, | 138 |
| abstract_inverted_index.detect | 122 |
| abstract_inverted_index.driven | 60 |
| abstract_inverted_index.fusing | 128 |
| abstract_inverted_index.infers | 133 |
| abstract_inverted_index.learns | 98, 120 |
| abstract_inverted_index.object | 12, 106 |
| abstract_inverted_index.paper, | 41 |
| abstract_inverted_index.people | 123 |
| abstract_inverted_index.person | 73 |
| abstract_inverted_index.system | 142 |
| abstract_inverted_index.target | 105 |
| abstract_inverted_index.visual | 3 |
| abstract_inverted_index.world, | 4 |
| abstract_inverted_index.address | 43 |
| abstract_inverted_index.density | 103 |
| abstract_inverted_index.exploit | 93 |
| abstract_inverted_index.jointly | 119, 139 |
| abstract_inverted_index.machine | 6 |
| abstract_inverted_index.objects | 87 |
| abstract_inverted_index.person. | 115 |
| abstract_inverted_index.photos. | 52 |
| abstract_inverted_index.predict | 100 |
| abstract_inverted_index.propose | 54 |
| abstract_inverted_index.trained | 140 |
| abstract_inverted_index.(V-COCO) | 157 |
| abstract_inverted_index.HICO-DET | 159 |
| abstract_inverted_index.approach | 149 |
| abstract_inverted_index.detected | 114 |
| abstract_inverted_index.everyday | 51 |
| abstract_inverted_index.objects, | 125 |
| abstract_inverted_index.powerful | 82 |
| abstract_inverted_index.problem. | 38 |
| abstract_inverted_index.recently | 152 |
| abstract_inverted_index.results. | 166 |
| abstract_inverted_index.triplets | 48, 135 |
| abstract_inverted_index.validate | 147 |
| abstract_inverted_index.approach. | 64 |
| abstract_inverted_index.clothing, | 77 |
| abstract_inverted_index.datasets, | 160 |
| abstract_inverted_index.detecting | 29, 47 |
| abstract_inverted_index.important | 34 |
| abstract_inverted_index.instances | 13 |
| abstract_inverted_index.interact. | 18 |
| abstract_inverted_index.locations | 107 |
| abstract_inverted_index.practical | 35 |
| abstract_inverted_index.recognize | 10 |
| abstract_inverted_index.appearance | 70, 111 |
| abstract_inverted_index.compelling | 165 |
| abstract_inverted_index.end-to-end | 141 |
| abstract_inverted_index.hypothesis | 66 |
| abstract_inverted_index.individual | 11 |
| abstract_inverted_index.introduced | 153 |
| abstract_inverted_index.localizing | 85 |
| abstract_inverted_index.scientific | 37 |
| abstract_inverted_index.understand | 1 |
| abstract_inverted_index.challenging | 50 |
| abstract_inverted_index.efficiently | 132 |
| abstract_inverted_index.interacting | 90 |
| abstract_inverted_index.interaction | 134 |
| abstract_inverted_index.predictions | 130 |
| abstract_inverted_index.InteractNet. | 145 |
| abstract_inverted_index.human-object | 30 |
| abstract_inverted_index.interactions | 27, 31 |
| abstract_inverted_index.human-centric | 63 |
| abstract_inverted_index.quantitatively | 164 |
| abstract_inverted_index.action-specific | 102 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile |