Detecting Attacks and Estimating States of Power Grids from Partial Observations with Machine Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1103/prxenergy.4.013003
The ever-increasing complexity of modern power grids makes them vulnerable to cyber and/or physical attacks. To protect them, accurate attack detection is essential. A challenging scenario is that a localized attack has occurred on a specific transmission line but only a small number of transmission lines elsewhere can be monitored. That is, full state observation of the whole power grid is not feasible, so attack detection and state estimation need to be done with only limited, partial state observations. We articulate a machine-learning framework to address this problem, where the necessity to deal with sequential time-series data with dynamical memories and to avoid a vanishing gradient has led us to choose the long short-term memory (LSTM) architecture. Leveraging the inherent capabilities of LSTM to handle sequential data and capture temporal dependencies, we demonstrate, using three benchmark power-grid networks, that the complete dynamical state of the whole power grid can be faithfully reconstructed and the attack can be accurately localized from limited, partial state observations even in the presence of noise. The performance improves as more observations become available. Further justification for using the LSTM is provided by our comparing its performance with that of alternative machine-learning architectures such as feedforward neural networks and random forest. Despite the gigantic existing literature on applications of LSTM to power grids, to our knowledge, the problem of locating an attack and estimating the state from limited observations had not been addressed before our work. The method developed can potentially be generalized to broad complex cyber-physical systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1103/prxenergy.4.013003
- OA Status
- diamond
- Cited By
- 2
- References
- 57
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407134909
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407134909Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1103/prxenergy.4.013003Digital Object Identifier
- Title
-
Detecting Attacks and Estimating States of Power Grids from Partial Observations with Machine LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-04Full publication date if available
- Authors
-
Zheng-Meng Zhai, Mohammadamin Moradi, Ying‐Cheng LaiList of authors in order
- Landing page
-
https://doi.org/10.1103/prxenergy.4.013003Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1103/prxenergy.4.013003Direct OA link when available
- Concepts
-
Computer science, Power (physics), Artificial intelligence, Machine learning, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
57Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407134909 |
|---|---|
| doi | https://doi.org/10.1103/prxenergy.4.013003 |
| ids.doi | https://doi.org/10.1103/prxenergy.4.013003 |
| ids.openalex | https://openalex.org/W4407134909 |
| fwci | 7.43354651 |
| type | article |
| title | Detecting Attacks and Estimating States of Power Grids from Partial Observations with Machine Learning |
| awards[0].id | https://openalex.org/G579146493 |
| awards[0].funder_id | https://openalex.org/F4320338279 |
| awards[0].display_name | |
| awards[0].funder_award_id | FA9550-21-1-0438 |
| awards[0].funder_display_name | Air Force Office of Scientific Research |
| biblio.issue | 1 |
| biblio.volume | 4 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10917 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Smart Grid Security and Resilience |
| topics[1].id | https://openalex.org/T13429 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.988099992275238 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Electricity Theft Detection Techniques |
| topics[2].id | https://openalex.org/T10400 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9879999756813049 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Network Security and Intrusion Detection |
| funders[0].id | https://openalex.org/F4320308533 |
| funders[0].ror | https://ror.org/0217khz32 |
| funders[0].display_name | BIRD Foundation |
| funders[1].id | https://openalex.org/F4320338279 |
| funders[1].ror | https://ror.org/011e9bt93 |
| funders[1].display_name | Air Force Office of Scientific Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5009162425994873 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C163258240 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4883973002433777 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[1].display_name | Power (physics) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.41545552015304565 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3912532925605774 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C121332964 |
| concepts[4].level | 0 |
| concepts[4].score | 0.11275529861450195 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[4].display_name | Physics |
| concepts[5].id | https://openalex.org/C62520636 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[5].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5009162425994873 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/power |
| keywords[1].score | 0.4883973002433777 |
| keywords[1].display_name | Power (physics) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.41545552015304565 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.3912532925605774 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/physics |
| keywords[4].score | 0.11275529861450195 |
| keywords[4].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1103/prxenergy.4.013003 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387279496 |
| locations[0].source.issn | 2768-5608 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2768-5608 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PRX Energy |
| locations[0].source.host_organization | https://openalex.org/P4310320261 |
| locations[0].source.host_organization_name | American Physical Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320261 |
| locations[0].source.host_organization_lineage_names | American Physical Society |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PRX Energy |
| locations[0].landing_page_url | https://doi.org/10.1103/prxenergy.4.013003 |
| locations[1].id | pmh:oai:doaj.org/article:bcb04b70f466482c89ee58a7a25b20eb |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | PRX Energy, Vol 4, Iss 1, p 013003 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/bcb04b70f466482c89ee58a7a25b20eb |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5089789809 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3702-0454 |
| authorships[0].author.display_name | Zheng-Meng Zhai |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I55732556 |
| authorships[0].affiliations[0].raw_affiliation_string | Arizona State University |
| authorships[0].institutions[0].id | https://openalex.org/I55732556 |
| authorships[0].institutions[0].ror | https://ror.org/03efmqc40 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I55732556 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Arizona State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zheng-Meng Zhai |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Arizona State University |
| authorships[1].author.id | https://openalex.org/A5014537420 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2096-6876 |
| authorships[1].author.display_name | Mohammadamin Moradi |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I55732556 |
| authorships[1].affiliations[0].raw_affiliation_string | Arizona State University |
| authorships[1].institutions[0].id | https://openalex.org/I55732556 |
| authorships[1].institutions[0].ror | https://ror.org/03efmqc40 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I55732556 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Arizona State University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mohammadamin Moradi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Arizona State University |
| authorships[2].author.id | https://openalex.org/A5102995786 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0723-733X |
| authorships[2].author.display_name | Ying‐Cheng Lai |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I55732556 |
| authorships[2].affiliations[0].raw_affiliation_string | Arizona State University |
| authorships[2].institutions[0].id | https://openalex.org/I55732556 |
| authorships[2].institutions[0].ror | https://ror.org/03efmqc40 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I55732556 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Arizona State University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Ying-Cheng Lai |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Arizona State University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1103/prxenergy.4.013003 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detecting Attacks and Estimating States of Power Grids from Partial Observations with Machine Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10917 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Smart Grid Security and Resilience |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1103/prxenergy.4.013003 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387279496 |
| best_oa_location.source.issn | 2768-5608 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2768-5608 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PRX Energy |
| best_oa_location.source.host_organization | https://openalex.org/P4310320261 |
| best_oa_location.source.host_organization_name | American Physical Society |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320261 |
| best_oa_location.source.host_organization_lineage_names | American Physical Society |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PRX Energy |
| best_oa_location.landing_page_url | https://doi.org/10.1103/prxenergy.4.013003 |
| primary_location.id | doi:10.1103/prxenergy.4.013003 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387279496 |
| primary_location.source.issn | 2768-5608 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2768-5608 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PRX Energy |
| primary_location.source.host_organization | https://openalex.org/P4310320261 |
| primary_location.source.host_organization_name | American Physical Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320261 |
| primary_location.source.host_organization_lineage_names | American Physical Society |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PRX Energy |
| primary_location.landing_page_url | https://doi.org/10.1103/prxenergy.4.013003 |
| publication_date | 2025-02-04 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2156652273, https://openalex.org/W2118527621, https://openalex.org/W1997339397, https://openalex.org/W2083826278, https://openalex.org/W2033150668, https://openalex.org/W2475109240, https://openalex.org/W2774965730, https://openalex.org/W4281784631, https://openalex.org/W4327566973, https://openalex.org/W2064675550, https://openalex.org/W2039133703, https://openalex.org/W2755889034, https://openalex.org/W3014473050, https://openalex.org/W2971724044, https://openalex.org/W3126004264, https://openalex.org/W4386185673, https://openalex.org/W4323352176, https://openalex.org/W4386739308, https://openalex.org/W4396686577, https://openalex.org/W4399380887, https://openalex.org/W4323660827, https://openalex.org/W2101764833, https://openalex.org/W4310151703, https://openalex.org/W3007828075, https://openalex.org/W2888609085, https://openalex.org/W2781662152, https://openalex.org/W3145348075, https://openalex.org/W2984841587, https://openalex.org/W2601924125, https://openalex.org/W3167824334, https://openalex.org/W3182007606, https://openalex.org/W2978986055, https://openalex.org/W3212441774, https://openalex.org/W4397034636, https://openalex.org/W3004891997, https://openalex.org/W3014191625, https://openalex.org/W3170851865, https://openalex.org/W4367281833, https://openalex.org/W4285107739, https://openalex.org/W3013246316, https://openalex.org/W4360993610, https://openalex.org/W4376456389, https://openalex.org/W3159817879, https://openalex.org/W4399511176, https://openalex.org/W3185341429, https://openalex.org/W3132455321, https://openalex.org/W2911964244, https://openalex.org/W4392120570, https://openalex.org/W3134574975, https://openalex.org/W4224011538, https://openalex.org/W4360604500, https://openalex.org/W4296664501, https://openalex.org/W2907492528, https://openalex.org/W4387880405, https://openalex.org/W4399606256, https://openalex.org/W3103538164, https://openalex.org/W3101784999 |
| referenced_works_count | 57 |
| abstract_inverted_index.A | 23 |
| abstract_inverted_index.a | 28, 34, 40, 81, 103 |
| abstract_inverted_index.To | 15 |
| abstract_inverted_index.We | 79 |
| abstract_inverted_index.an | 224 |
| abstract_inverted_index.as | 173, 198 |
| abstract_inverted_index.be | 48, 71, 149, 156, 245 |
| abstract_inverted_index.by | 186 |
| abstract_inverted_index.in | 165 |
| abstract_inverted_index.is | 21, 26, 60, 184 |
| abstract_inverted_index.of | 3, 43, 55, 121, 143, 168, 193, 212, 222 |
| abstract_inverted_index.on | 33, 210 |
| abstract_inverted_index.so | 63 |
| abstract_inverted_index.to | 10, 70, 84, 91, 101, 109, 123, 214, 217, 247 |
| abstract_inverted_index.us | 108 |
| abstract_inverted_index.we | 131 |
| abstract_inverted_index.The | 0, 170, 240 |
| abstract_inverted_index.and | 66, 100, 127, 152, 202, 226 |
| abstract_inverted_index.but | 38 |
| abstract_inverted_index.can | 47, 148, 155, 243 |
| abstract_inverted_index.for | 180 |
| abstract_inverted_index.had | 233 |
| abstract_inverted_index.has | 31, 106 |
| abstract_inverted_index.is, | 51 |
| abstract_inverted_index.its | 189 |
| abstract_inverted_index.led | 107 |
| abstract_inverted_index.not | 61, 234 |
| abstract_inverted_index.our | 187, 218, 238 |
| abstract_inverted_index.the | 56, 89, 111, 118, 139, 144, 153, 166, 182, 206, 220, 228 |
| abstract_inverted_index.LSTM | 122, 183, 213 |
| abstract_inverted_index.That | 50 |
| abstract_inverted_index.been | 235 |
| abstract_inverted_index.data | 96, 126 |
| abstract_inverted_index.deal | 92 |
| abstract_inverted_index.done | 72 |
| abstract_inverted_index.even | 164 |
| abstract_inverted_index.from | 159, 230 |
| abstract_inverted_index.full | 52 |
| abstract_inverted_index.grid | 59, 147 |
| abstract_inverted_index.line | 37 |
| abstract_inverted_index.long | 112 |
| abstract_inverted_index.more | 174 |
| abstract_inverted_index.need | 69 |
| abstract_inverted_index.only | 39, 74 |
| abstract_inverted_index.such | 197 |
| abstract_inverted_index.that | 27, 138, 192 |
| abstract_inverted_index.them | 8 |
| abstract_inverted_index.this | 86 |
| abstract_inverted_index.with | 73, 93, 97, 191 |
| abstract_inverted_index.avoid | 102 |
| abstract_inverted_index.broad | 248 |
| abstract_inverted_index.cyber | 11 |
| abstract_inverted_index.grids | 6 |
| abstract_inverted_index.lines | 45 |
| abstract_inverted_index.makes | 7 |
| abstract_inverted_index.power | 5, 58, 146, 215 |
| abstract_inverted_index.small | 41 |
| abstract_inverted_index.state | 53, 67, 77, 142, 162, 229 |
| abstract_inverted_index.them, | 17 |
| abstract_inverted_index.three | 134 |
| abstract_inverted_index.using | 133, 181 |
| abstract_inverted_index.where | 88 |
| abstract_inverted_index.whole | 57, 145 |
| abstract_inverted_index.work. | 239 |
| abstract_inverted_index.(LSTM) | 115 |
| abstract_inverted_index.and/or | 12 |
| abstract_inverted_index.attack | 19, 30, 64, 154, 225 |
| abstract_inverted_index.become | 176 |
| abstract_inverted_index.before | 237 |
| abstract_inverted_index.choose | 110 |
| abstract_inverted_index.grids, | 216 |
| abstract_inverted_index.handle | 124 |
| abstract_inverted_index.memory | 114 |
| abstract_inverted_index.method | 241 |
| abstract_inverted_index.modern | 4 |
| abstract_inverted_index.neural | 200 |
| abstract_inverted_index.noise. | 169 |
| abstract_inverted_index.number | 42 |
| abstract_inverted_index.random | 203 |
| abstract_inverted_index.Despite | 205 |
| abstract_inverted_index.Further | 178 |
| abstract_inverted_index.address | 85 |
| abstract_inverted_index.capture | 128 |
| abstract_inverted_index.complex | 249 |
| abstract_inverted_index.forest. | 204 |
| abstract_inverted_index.limited | 231 |
| abstract_inverted_index.partial | 76, 161 |
| abstract_inverted_index.problem | 221 |
| abstract_inverted_index.protect | 16 |
| abstract_inverted_index.accurate | 18 |
| abstract_inverted_index.attacks. | 14 |
| abstract_inverted_index.complete | 140 |
| abstract_inverted_index.existing | 208 |
| abstract_inverted_index.gigantic | 207 |
| abstract_inverted_index.gradient | 105 |
| abstract_inverted_index.improves | 172 |
| abstract_inverted_index.inherent | 119 |
| abstract_inverted_index.limited, | 75, 160 |
| abstract_inverted_index.locating | 223 |
| abstract_inverted_index.memories | 99 |
| abstract_inverted_index.networks | 201 |
| abstract_inverted_index.occurred | 32 |
| abstract_inverted_index.physical | 13 |
| abstract_inverted_index.presence | 167 |
| abstract_inverted_index.problem, | 87 |
| abstract_inverted_index.provided | 185 |
| abstract_inverted_index.scenario | 25 |
| abstract_inverted_index.specific | 35 |
| abstract_inverted_index.systems. | 251 |
| abstract_inverted_index.temporal | 129 |
| abstract_inverted_index.addressed | 236 |
| abstract_inverted_index.benchmark | 135 |
| abstract_inverted_index.comparing | 188 |
| abstract_inverted_index.detection | 20, 65 |
| abstract_inverted_index.developed | 242 |
| abstract_inverted_index.dynamical | 98, 141 |
| abstract_inverted_index.elsewhere | 46 |
| abstract_inverted_index.feasible, | 62 |
| abstract_inverted_index.framework | 83 |
| abstract_inverted_index.localized | 29, 158 |
| abstract_inverted_index.necessity | 90 |
| abstract_inverted_index.networks, | 137 |
| abstract_inverted_index.vanishing | 104 |
| abstract_inverted_index.Leveraging | 117 |
| abstract_inverted_index.accurately | 157 |
| abstract_inverted_index.articulate | 80 |
| abstract_inverted_index.available. | 177 |
| abstract_inverted_index.complexity | 2 |
| abstract_inverted_index.essential. | 22 |
| abstract_inverted_index.estimating | 227 |
| abstract_inverted_index.estimation | 68 |
| abstract_inverted_index.faithfully | 150 |
| abstract_inverted_index.knowledge, | 219 |
| abstract_inverted_index.literature | 209 |
| abstract_inverted_index.monitored. | 49 |
| abstract_inverted_index.power-grid | 136 |
| abstract_inverted_index.sequential | 94, 125 |
| abstract_inverted_index.short-term | 113 |
| abstract_inverted_index.vulnerable | 9 |
| abstract_inverted_index.alternative | 194 |
| abstract_inverted_index.challenging | 24 |
| abstract_inverted_index.feedforward | 199 |
| abstract_inverted_index.generalized | 246 |
| abstract_inverted_index.observation | 54 |
| abstract_inverted_index.performance | 171, 190 |
| abstract_inverted_index.potentially | 244 |
| abstract_inverted_index.time-series | 95 |
| abstract_inverted_index.applications | 211 |
| abstract_inverted_index.capabilities | 120 |
| abstract_inverted_index.demonstrate, | 132 |
| abstract_inverted_index.observations | 163, 175, 232 |
| abstract_inverted_index.transmission | 36, 44 |
| abstract_inverted_index.architecture. | 116 |
| abstract_inverted_index.architectures | 196 |
| abstract_inverted_index.dependencies, | 130 |
| abstract_inverted_index.justification | 179 |
| abstract_inverted_index.observations. | 78 |
| abstract_inverted_index.reconstructed | 151 |
| abstract_inverted_index.cyber-physical | 250 |
| abstract_inverted_index.ever-increasing | 1 |
| abstract_inverted_index.machine-learning | 82, 195 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.91040811 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |