Detecting drought regulators using stochastic inference in Bayesian networks Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pone.0255486
Drought is a natural hazard that affects crops by inducing water stress. Water stress, induced by drought accounts for more loss in crop yield than all the other causes combined. With the increasing frequency and intensity of droughts worldwide, it is essential to develop drought-resistant crops to ensure food security. In this paper, we model multiple drought signaling pathways in Arabidopsis using Bayesian networks to identify potential regulators of drought-responsive reporter genes. Genetically intervening at these regulators can help develop drought-resistant crops. We create the Bayesian network model from the biological literature and determine its parameters from publicly available data. We conduct inference on this model using a stochastic simulation technique known as likelihood weighting to determine the best regulators of drought-responsive reporter genes. Our analysis reveals that activating MYC2 or inhibiting ATAF1 are the best single node intervention strategies to regulate the drought-responsive reporter genes. Additionally, we observe simultaneously activating MYC2 and inhibiting ATAF1 is a better strategy. The Bayesian network model indicated that MYC2 and ATAF1 are possible regulators of the drought response. Validation experiments showed that ATAF1 negatively regulated the drought response. Thus intervening at ATAF1 has the potential to create drought-resistant crops.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pone.0255486
- OA Status
- gold
- Cited By
- 8
- References
- 74
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3157825400
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3157825400Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pone.0255486Digital Object Identifier
- Title
-
Detecting drought regulators using stochastic inference in Bayesian networksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-16Full publication date if available
- Authors
-
Aditya Lahiri, Lin Zhou, Ping He, Aniruddha DattaList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pone.0255486Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1371/journal.pone.0255486Direct OA link when available
- Concepts
-
Drought tolerance, Computational biology, Drought stress, Gene regulatory network, Biology, Biotechnology, Gene, Genetics, Agronomy, Gene expressionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 3, 2022: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
74Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3157825400 |
|---|---|
| doi | https://doi.org/10.1371/journal.pone.0255486 |
| ids.doi | https://doi.org/10.1371/journal.pone.0255486 |
| ids.mag | 3157825400 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34398879 |
| ids.openalex | https://openalex.org/W3157825400 |
| fwci | 1.09492093 |
| mesh[0].qualifier_ui | Q000235 |
| mesh[0].descriptor_ui | D017360 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | genetics |
| mesh[0].descriptor_name | Arabidopsis |
| mesh[1].qualifier_ui | Q000254 |
| mesh[1].descriptor_ui | D017360 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | growth & development |
| mesh[1].descriptor_name | Arabidopsis |
| mesh[2].qualifier_ui | Q000378 |
| mesh[2].descriptor_ui | D017360 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | metabolism |
| mesh[2].descriptor_name | Arabidopsis |
| mesh[3].qualifier_ui | Q000235 |
| mesh[3].descriptor_ui | D029681 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | genetics |
| mesh[3].descriptor_name | Arabidopsis Proteins |
| mesh[4].qualifier_ui | Q000378 |
| mesh[4].descriptor_ui | D029681 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | metabolism |
| mesh[4].descriptor_name | Arabidopsis Proteins |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D001499 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Bayes Theorem |
| mesh[6].qualifier_ui | Q000235 |
| mesh[6].descriptor_ui | D018556 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | genetics |
| mesh[6].descriptor_name | Crops, Agricultural |
| mesh[7].qualifier_ui | Q000254 |
| mesh[7].descriptor_ui | D018556 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | growth & development |
| mesh[7].descriptor_name | Crops, Agricultural |
| mesh[8].qualifier_ui | Q000378 |
| mesh[8].descriptor_ui | D018556 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | metabolism |
| mesh[8].descriptor_name | Crops, Agricultural |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D055864 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Droughts |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D018506 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Gene Expression Regulation, Plant |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D013312 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Stress, Physiological |
| mesh[12].qualifier_ui | Q000235 |
| mesh[12].descriptor_ui | D017360 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | genetics |
| mesh[12].descriptor_name | Arabidopsis |
| mesh[13].qualifier_ui | Q000254 |
| mesh[13].descriptor_ui | D017360 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | growth & development |
| mesh[13].descriptor_name | Arabidopsis |
| mesh[14].qualifier_ui | Q000378 |
| mesh[14].descriptor_ui | D017360 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | metabolism |
| mesh[14].descriptor_name | Arabidopsis |
| mesh[15].qualifier_ui | Q000235 |
| mesh[15].descriptor_ui | D029681 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | genetics |
| mesh[15].descriptor_name | Arabidopsis Proteins |
| mesh[16].qualifier_ui | Q000378 |
| mesh[16].descriptor_ui | D029681 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | metabolism |
| mesh[16].descriptor_name | Arabidopsis Proteins |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D001499 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Bayes Theorem |
| mesh[18].qualifier_ui | Q000235 |
| mesh[18].descriptor_ui | D018556 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | genetics |
| mesh[18].descriptor_name | Crops, Agricultural |
| mesh[19].qualifier_ui | Q000254 |
| mesh[19].descriptor_ui | D018556 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | growth & development |
| mesh[19].descriptor_name | Crops, Agricultural |
| mesh[20].qualifier_ui | Q000378 |
| mesh[20].descriptor_ui | D018556 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | metabolism |
| mesh[20].descriptor_name | Crops, Agricultural |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D055864 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Droughts |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D018506 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Gene Expression Regulation, Plant |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D013312 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Stress, Physiological |
| type | article |
| title | Detecting drought regulators using stochastic inference in Bayesian networks |
| awards[0].id | https://openalex.org/G236138992 |
| awards[0].funder_id | https://openalex.org/F4320332299 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2020-67013-31615 |
| awards[0].funder_display_name | National Institute of Food and Agriculture |
| biblio.issue | 8 |
| biblio.volume | 16 |
| biblio.last_page | e0255486 |
| biblio.first_page | e0255486 |
| topics[0].id | https://openalex.org/T12472 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Plant responses to water stress |
| topics[1].id | https://openalex.org/T12045 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9977999925613403 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Rice Cultivation and Yield Improvement |
| topics[2].id | https://openalex.org/T10014 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9948999881744385 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Plant Stress Responses and Tolerance |
| funders[0].id | https://openalex.org/F4320332299 |
| funders[0].ror | https://ror.org/05qx3fv49 |
| funders[0].display_name | National Institute of Food and Agriculture |
| is_xpac | False |
| apc_list.value | 1805 |
| apc_list.currency | USD |
| apc_list.value_usd | 1805 |
| apc_paid.value | 1805 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1805 |
| concepts[0].id | https://openalex.org/C189797535 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6189842224121094 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12142810 |
| concepts[0].display_name | Drought tolerance |
| concepts[1].id | https://openalex.org/C70721500 |
| concepts[1].level | 1 |
| concepts[1].score | 0.589546263217926 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[1].display_name | Computational biology |
| concepts[2].id | https://openalex.org/C2992468275 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5704325437545776 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12142810 |
| concepts[2].display_name | Drought stress |
| concepts[3].id | https://openalex.org/C67339327 |
| concepts[3].level | 4 |
| concepts[3].score | 0.5314117074012756 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1502576 |
| concepts[3].display_name | Gene regulatory network |
| concepts[4].id | https://openalex.org/C86803240 |
| concepts[4].level | 0 |
| concepts[4].score | 0.47318196296691895 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[4].display_name | Biology |
| concepts[5].id | https://openalex.org/C150903083 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3984958231449127 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7108 |
| concepts[5].display_name | Biotechnology |
| concepts[6].id | https://openalex.org/C104317684 |
| concepts[6].level | 2 |
| concepts[6].score | 0.3659083843231201 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[6].display_name | Gene |
| concepts[7].id | https://openalex.org/C54355233 |
| concepts[7].level | 1 |
| concepts[7].score | 0.25189438462257385 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[7].display_name | Genetics |
| concepts[8].id | https://openalex.org/C6557445 |
| concepts[8].level | 1 |
| concepts[8].score | 0.14820313453674316 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[8].display_name | Agronomy |
| concepts[9].id | https://openalex.org/C150194340 |
| concepts[9].level | 3 |
| concepts[9].score | 0.13234108686447144 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q26972 |
| concepts[9].display_name | Gene expression |
| keywords[0].id | https://openalex.org/keywords/drought-tolerance |
| keywords[0].score | 0.6189842224121094 |
| keywords[0].display_name | Drought tolerance |
| keywords[1].id | https://openalex.org/keywords/computational-biology |
| keywords[1].score | 0.589546263217926 |
| keywords[1].display_name | Computational biology |
| keywords[2].id | https://openalex.org/keywords/drought-stress |
| keywords[2].score | 0.5704325437545776 |
| keywords[2].display_name | Drought stress |
| keywords[3].id | https://openalex.org/keywords/gene-regulatory-network |
| keywords[3].score | 0.5314117074012756 |
| keywords[3].display_name | Gene regulatory network |
| keywords[4].id | https://openalex.org/keywords/biology |
| keywords[4].score | 0.47318196296691895 |
| keywords[4].display_name | Biology |
| keywords[5].id | https://openalex.org/keywords/biotechnology |
| keywords[5].score | 0.3984958231449127 |
| keywords[5].display_name | Biotechnology |
| keywords[6].id | https://openalex.org/keywords/gene |
| keywords[6].score | 0.3659083843231201 |
| keywords[6].display_name | Gene |
| keywords[7].id | https://openalex.org/keywords/genetics |
| keywords[7].score | 0.25189438462257385 |
| keywords[7].display_name | Genetics |
| keywords[8].id | https://openalex.org/keywords/agronomy |
| keywords[8].score | 0.14820313453674316 |
| keywords[8].display_name | Agronomy |
| keywords[9].id | https://openalex.org/keywords/gene-expression |
| keywords[9].score | 0.13234108686447144 |
| keywords[9].display_name | Gene expression |
| language | en |
| locations[0].id | doi:10.1371/journal.pone.0255486 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S202381698 |
| locations[0].source.issn | 1932-6203 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1932-6203 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLoS ONE |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_lineage_names | Public Library of Science |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS ONE |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pone.0255486 |
| locations[1].id | pmid:34398879 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PloS one |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34398879 |
| locations[2].id | pmh:oai:doaj.org/article:af2cbe046765401ea415668fb558342c |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | PLoS ONE, Vol 16, Iss 8, p e0255486 (2021) |
| locations[2].landing_page_url | https://doaj.org/article/af2cbe046765401ea415668fb558342c |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:8367000 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | PLoS One |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8367000 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5053718192 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9352-1312 |
| authorships[0].author.display_name | Aditya Lahiri |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I91045830 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, United States of America |
| authorships[0].institutions[0].id | https://openalex.org/I91045830 |
| authorships[0].institutions[0].ror | https://ror.org/01f5ytq51 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I91045830 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Texas A&M University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Aditya Lahiri |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, United States of America |
| authorships[1].author.id | https://openalex.org/A5056323893 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1010-5610 |
| authorships[1].author.display_name | Lin Zhou |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I91045830 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America |
| authorships[1].institutions[0].id | https://openalex.org/I91045830 |
| authorships[1].institutions[0].ror | https://ror.org/01f5ytq51 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I91045830 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Texas A&M University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lin Zhou |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America |
| authorships[2].author.id | https://openalex.org/A5031979935 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5926-8349 |
| authorships[2].author.display_name | Ping He |
| authorships[2].countries | US |
| authorships[2].affiliations[0].raw_affiliation_string | Institute for Plant Genomics and Biotechnology, Norman E. Borlaug Center, College Station, Texas, United States of America |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I91045830 |
| authorships[2].affiliations[1].raw_affiliation_string | Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America |
| authorships[2].institutions[0].id | https://openalex.org/I91045830 |
| authorships[2].institutions[0].ror | https://ror.org/01f5ytq51 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I91045830 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Texas A&M University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ping He |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America, Institute for Plant Genomics and Biotechnology, Norman E. Borlaug Center, College Station, Texas, United States of America |
| authorships[3].author.id | https://openalex.org/A5045462352 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1213-3807 |
| authorships[3].author.display_name | Aniruddha Datta |
| authorships[3].countries | US |
| authorships[3].affiliations[0].raw_affiliation_string | TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering (CBGSE), College Station, Texas, United States of America |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I91045830 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, United States of America |
| authorships[3].institutions[0].id | https://openalex.org/I91045830 |
| authorships[3].institutions[0].ror | https://ror.org/01f5ytq51 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I91045830 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Texas A&M University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Aniruddha Datta |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, United States of America, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering (CBGSE), College Station, Texas, United States of America |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1371/journal.pone.0255486 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detecting drought regulators using stochastic inference in Bayesian networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12472 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Plant responses to water stress |
| related_works | https://openalex.org/W3149757181, https://openalex.org/W2337302388, https://openalex.org/W2762948138, https://openalex.org/W2971779471, https://openalex.org/W2360064927, https://openalex.org/W2902469593, https://openalex.org/W2094315831, https://openalex.org/W2393768760, https://openalex.org/W2911627144, https://openalex.org/W2607051586 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1371/journal.pone.0255486 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S202381698 |
| best_oa_location.source.issn | 1932-6203 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1932-6203 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLoS ONE |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_lineage_names | Public Library of Science |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS ONE |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pone.0255486 |
| primary_location.id | doi:10.1371/journal.pone.0255486 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S202381698 |
| primary_location.source.issn | 1932-6203 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1932-6203 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLoS ONE |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_lineage_names | Public Library of Science |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS ONE |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pone.0255486 |
| publication_date | 2021-08-16 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W1975339187, https://openalex.org/W2887848592, https://openalex.org/W2015522309, https://openalex.org/W2169245074, https://openalex.org/W2553048544, https://openalex.org/W2553288044, https://openalex.org/W2134358106, https://openalex.org/W2986371480, https://openalex.org/W2899941147, https://openalex.org/W2978632040, https://openalex.org/W2339487201, https://openalex.org/W2095811247, https://openalex.org/W2055023599, https://openalex.org/W2762810701, https://openalex.org/W2099524720, https://openalex.org/W2600374287, https://openalex.org/W2894944205, https://openalex.org/W2883140756, https://openalex.org/W2157236929, https://openalex.org/W1984824352, https://openalex.org/W2165829183, https://openalex.org/W1963843265, https://openalex.org/W2149098862, https://openalex.org/W1832670902, https://openalex.org/W2171724922, https://openalex.org/W2142269897, https://openalex.org/W2053682208, https://openalex.org/W1983870100, https://openalex.org/W2082716056, https://openalex.org/W2112029938, https://openalex.org/W2137669648, https://openalex.org/W2603188350, https://openalex.org/W2734509587, https://openalex.org/W2108652954, https://openalex.org/W2107593640, https://openalex.org/W1538353636, https://openalex.org/W2026051604, https://openalex.org/W1985326464, https://openalex.org/W2939566402, https://openalex.org/W2440524056, https://openalex.org/W2036058623, https://openalex.org/W2062029454, https://openalex.org/W2993978806, https://openalex.org/W2890400107, https://openalex.org/W3154614489, https://openalex.org/W3084506393, https://openalex.org/W2117625122, https://openalex.org/W2494554780, https://openalex.org/W2947197489, https://openalex.org/W2913936525, https://openalex.org/W1980452149, https://openalex.org/W2170750031, https://openalex.org/W2128088446, https://openalex.org/W2061205797, https://openalex.org/W2045741811, https://openalex.org/W2147576181, https://openalex.org/W2098597971, https://openalex.org/W2946273100, https://openalex.org/W2286051854, https://openalex.org/W2032238597, https://openalex.org/W2021459567, https://openalex.org/W2939636329, https://openalex.org/W2801861974, https://openalex.org/W2335512495, https://openalex.org/W1879564354, https://openalex.org/W2028886234, https://openalex.org/W4285719527, https://openalex.org/W3146404850, https://openalex.org/W2171265988, https://openalex.org/W3133775961, https://openalex.org/W4362585833, https://openalex.org/W3082247111, https://openalex.org/W2504486322, https://openalex.org/W2488975212 |
| referenced_works_count | 74 |
| abstract_inverted_index.a | 2, 107, 156 |
| abstract_inverted_index.In | 50 |
| abstract_inverted_index.We | 82, 100 |
| abstract_inverted_index.as | 112 |
| abstract_inverted_index.at | 74, 187 |
| abstract_inverted_index.by | 8, 15 |
| abstract_inverted_index.in | 21, 59 |
| abstract_inverted_index.is | 1, 40, 155 |
| abstract_inverted_index.it | 39 |
| abstract_inverted_index.of | 36, 68, 120, 171 |
| abstract_inverted_index.on | 103 |
| abstract_inverted_index.or | 130 |
| abstract_inverted_index.to | 42, 46, 64, 115, 140, 192 |
| abstract_inverted_index.we | 53, 147 |
| abstract_inverted_index.Our | 124 |
| abstract_inverted_index.The | 159 |
| abstract_inverted_index.all | 25 |
| abstract_inverted_index.and | 34, 92, 152, 166 |
| abstract_inverted_index.are | 133, 168 |
| abstract_inverted_index.can | 77 |
| abstract_inverted_index.for | 18 |
| abstract_inverted_index.has | 189 |
| abstract_inverted_index.its | 94 |
| abstract_inverted_index.the | 26, 31, 84, 89, 117, 134, 142, 172, 182, 190 |
| abstract_inverted_index.MYC2 | 129, 151, 165 |
| abstract_inverted_index.Thus | 185 |
| abstract_inverted_index.With | 30 |
| abstract_inverted_index.best | 118, 135 |
| abstract_inverted_index.crop | 22 |
| abstract_inverted_index.food | 48 |
| abstract_inverted_index.from | 88, 96 |
| abstract_inverted_index.help | 78 |
| abstract_inverted_index.loss | 20 |
| abstract_inverted_index.more | 19 |
| abstract_inverted_index.node | 137 |
| abstract_inverted_index.than | 24 |
| abstract_inverted_index.that | 5, 127, 164, 178 |
| abstract_inverted_index.this | 51, 104 |
| abstract_inverted_index.ATAF1 | 132, 154, 167, 179, 188 |
| abstract_inverted_index.Water | 12 |
| abstract_inverted_index.crops | 7, 45 |
| abstract_inverted_index.data. | 99 |
| abstract_inverted_index.known | 111 |
| abstract_inverted_index.model | 54, 87, 105, 162 |
| abstract_inverted_index.other | 27 |
| abstract_inverted_index.these | 75 |
| abstract_inverted_index.using | 61, 106 |
| abstract_inverted_index.water | 10 |
| abstract_inverted_index.yield | 23 |
| abstract_inverted_index.better | 157 |
| abstract_inverted_index.causes | 28 |
| abstract_inverted_index.create | 83, 193 |
| abstract_inverted_index.crops. | 81, 195 |
| abstract_inverted_index.ensure | 47 |
| abstract_inverted_index.genes. | 71, 123, 145 |
| abstract_inverted_index.hazard | 4 |
| abstract_inverted_index.paper, | 52 |
| abstract_inverted_index.showed | 177 |
| abstract_inverted_index.single | 136 |
| abstract_inverted_index.Drought | 0 |
| abstract_inverted_index.affects | 6 |
| abstract_inverted_index.conduct | 101 |
| abstract_inverted_index.develop | 43, 79 |
| abstract_inverted_index.drought | 16, 56, 173, 183 |
| abstract_inverted_index.induced | 14 |
| abstract_inverted_index.natural | 3 |
| abstract_inverted_index.network | 86, 161 |
| abstract_inverted_index.observe | 148 |
| abstract_inverted_index.reveals | 126 |
| abstract_inverted_index.stress, | 13 |
| abstract_inverted_index.stress. | 11 |
| abstract_inverted_index.Bayesian | 62, 85, 160 |
| abstract_inverted_index.accounts | 17 |
| abstract_inverted_index.analysis | 125 |
| abstract_inverted_index.droughts | 37 |
| abstract_inverted_index.identify | 65 |
| abstract_inverted_index.inducing | 9 |
| abstract_inverted_index.multiple | 55 |
| abstract_inverted_index.networks | 63 |
| abstract_inverted_index.pathways | 58 |
| abstract_inverted_index.possible | 169 |
| abstract_inverted_index.publicly | 97 |
| abstract_inverted_index.regulate | 141 |
| abstract_inverted_index.reporter | 70, 122, 144 |
| abstract_inverted_index.available | 98 |
| abstract_inverted_index.combined. | 29 |
| abstract_inverted_index.determine | 93, 116 |
| abstract_inverted_index.essential | 41 |
| abstract_inverted_index.frequency | 33 |
| abstract_inverted_index.indicated | 163 |
| abstract_inverted_index.inference | 102 |
| abstract_inverted_index.intensity | 35 |
| abstract_inverted_index.potential | 66, 191 |
| abstract_inverted_index.regulated | 181 |
| abstract_inverted_index.response. | 174, 184 |
| abstract_inverted_index.security. | 49 |
| abstract_inverted_index.signaling | 57 |
| abstract_inverted_index.strategy. | 158 |
| abstract_inverted_index.technique | 110 |
| abstract_inverted_index.weighting | 114 |
| abstract_inverted_index.Validation | 175 |
| abstract_inverted_index.activating | 128, 150 |
| abstract_inverted_index.biological | 90 |
| abstract_inverted_index.increasing | 32 |
| abstract_inverted_index.inhibiting | 131, 153 |
| abstract_inverted_index.likelihood | 113 |
| abstract_inverted_index.literature | 91 |
| abstract_inverted_index.negatively | 180 |
| abstract_inverted_index.parameters | 95 |
| abstract_inverted_index.regulators | 67, 76, 119, 170 |
| abstract_inverted_index.simulation | 109 |
| abstract_inverted_index.stochastic | 108 |
| abstract_inverted_index.strategies | 139 |
| abstract_inverted_index.worldwide, | 38 |
| abstract_inverted_index.Arabidopsis | 60 |
| abstract_inverted_index.Genetically | 72 |
| abstract_inverted_index.experiments | 176 |
| abstract_inverted_index.intervening | 73, 186 |
| abstract_inverted_index.intervention | 138 |
| abstract_inverted_index.Additionally, | 146 |
| abstract_inverted_index.simultaneously | 149 |
| abstract_inverted_index.drought-resistant | 44, 80, 194 |
| abstract_inverted_index.drought-responsive | 69, 121, 143 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5031979935, https://openalex.org/A5053718192, https://openalex.org/A5045462352, https://openalex.org/A5056323893 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I91045830 |
| citation_normalized_percentile.value | 0.84537983 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |