Detecting Emotion Primitives from Speech and their use in discerning Categorical Emotions Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2002.01323
Emotion plays an essential role in human-to-human communication, enabling us to convey feelings such as happiness, frustration, and sincerity. While modern speech technologies rely heavily on speech recognition and natural language understanding for speech content understanding, the investigation of vocal expression is increasingly gaining attention. Key considerations for building robust emotion models include characterizing and improving the extent to which a model, given its training data distribution, is able to generalize to unseen data conditions. This work investigated a long-shot-term memory (LSTM) network and a time convolution - LSTM (TC-LSTM) to detect primitive emotion attributes such as valence, arousal, and dominance, from speech. It was observed that training with multiple datasets and using robust features improved the concordance correlation coefficient (CCC) for valence, by 30\% with respect to the baseline system. Additionally, this work investigated how emotion primitives can be used to detect categorical emotions such as happiness, disgust, contempt, anger, and surprise from neutral speech, and results indicated that arousal, followed by dominance was a better detector of such emotions.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2002.01323
- https://arxiv.org/pdf/2002.01323
- OA Status
- green
- Cited By
- 1
- References
- 17
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3015939301
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3015939301Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2002.01323Digital Object Identifier
- Title
-
Detecting Emotion Primitives from Speech and their use in discerning Categorical EmotionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-31Full publication date if available
- Authors
-
Vasudha Kowtha, Vikramjit Mitra, Chris Bartels, Erik Marchi, Sue Booker, William Caruso, Sachin Kajarekar, Devang NaikList of authors in order
- Landing page
-
https://arxiv.org/abs/2002.01323Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2002.01323Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2002.01323Direct OA link when available
- Concepts
-
Disgust, Valence (chemistry), Anger, Arousal, Happiness, Emotion classification, Cognitive psychology, Psychology, Contempt, Naturalness, Categorical variable, Utterance, Computer science, Feeling, Speech recognition, Social psychology, Machine learning, Quantum mechanics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1Per-year citation counts (last 5 years)
- References (count)
-
17Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3015939301 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2002.01323 |
| ids.doi | https://doi.org/10.48550/arxiv.2002.01323 |
| ids.mag | 3015939301 |
| ids.openalex | https://openalex.org/W3015939301 |
| fwci | |
| type | preprint |
| title | Detecting Emotion Primitives from Speech and their use in discerning Categorical Emotions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10667 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3205 |
| topics[0].subfield.display_name | Experimental and Cognitive Psychology |
| topics[0].display_name | Emotion and Mood Recognition |
| topics[1].id | https://openalex.org/T10664 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9968000054359436 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Sentiment Analysis and Opinion Mining |
| topics[2].id | https://openalex.org/T11309 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.991599977016449 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Music and Audio Processing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777375102 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7266592383384705 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q208351 |
| concepts[0].display_name | Disgust |
| concepts[1].id | https://openalex.org/C168900304 |
| concepts[1].level | 2 |
| concepts[1].score | 0.637420117855072 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q171407 |
| concepts[1].display_name | Valence (chemistry) |
| concepts[2].id | https://openalex.org/C2779302386 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6309962868690491 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q79871 |
| concepts[2].display_name | Anger |
| concepts[3].id | https://openalex.org/C36951298 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5343626737594604 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q379784 |
| concepts[3].display_name | Arousal |
| concepts[4].id | https://openalex.org/C2778999518 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5299818515777588 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8 |
| concepts[4].display_name | Happiness |
| concepts[5].id | https://openalex.org/C206310091 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5185930728912354 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q750859 |
| concepts[5].display_name | Emotion classification |
| concepts[6].id | https://openalex.org/C180747234 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5087292790412903 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[6].display_name | Cognitive psychology |
| concepts[7].id | https://openalex.org/C15744967 |
| concepts[7].level | 0 |
| concepts[7].score | 0.49692681431770325 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[7].display_name | Psychology |
| concepts[8].id | https://openalex.org/C2777316895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4852561950683594 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5338825 |
| concepts[8].display_name | Contempt |
| concepts[9].id | https://openalex.org/C134537474 |
| concepts[9].level | 2 |
| concepts[9].score | 0.48263412714004517 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q17144832 |
| concepts[9].display_name | Naturalness |
| concepts[10].id | https://openalex.org/C5274069 |
| concepts[10].level | 2 |
| concepts[10].score | 0.442658394575119 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2285707 |
| concepts[10].display_name | Categorical variable |
| concepts[11].id | https://openalex.org/C2775852435 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4361928105354309 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q258403 |
| concepts[11].display_name | Utterance |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.434286504983902 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C122980154 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4200681746006012 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q205555 |
| concepts[13].display_name | Feeling |
| concepts[14].id | https://openalex.org/C28490314 |
| concepts[14].level | 1 |
| concepts[14].score | 0.40672552585601807 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[14].display_name | Speech recognition |
| concepts[15].id | https://openalex.org/C77805123 |
| concepts[15].level | 1 |
| concepts[15].score | 0.17874929308891296 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[15].display_name | Social psychology |
| concepts[16].id | https://openalex.org/C119857082 |
| concepts[16].level | 1 |
| concepts[16].score | 0.13491776585578918 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[16].display_name | Machine learning |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/disgust |
| keywords[0].score | 0.7266592383384705 |
| keywords[0].display_name | Disgust |
| keywords[1].id | https://openalex.org/keywords/valence |
| keywords[1].score | 0.637420117855072 |
| keywords[1].display_name | Valence (chemistry) |
| keywords[2].id | https://openalex.org/keywords/anger |
| keywords[2].score | 0.6309962868690491 |
| keywords[2].display_name | Anger |
| keywords[3].id | https://openalex.org/keywords/arousal |
| keywords[3].score | 0.5343626737594604 |
| keywords[3].display_name | Arousal |
| keywords[4].id | https://openalex.org/keywords/happiness |
| keywords[4].score | 0.5299818515777588 |
| keywords[4].display_name | Happiness |
| keywords[5].id | https://openalex.org/keywords/emotion-classification |
| keywords[5].score | 0.5185930728912354 |
| keywords[5].display_name | Emotion classification |
| keywords[6].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[6].score | 0.5087292790412903 |
| keywords[6].display_name | Cognitive psychology |
| keywords[7].id | https://openalex.org/keywords/psychology |
| keywords[7].score | 0.49692681431770325 |
| keywords[7].display_name | Psychology |
| keywords[8].id | https://openalex.org/keywords/contempt |
| keywords[8].score | 0.4852561950683594 |
| keywords[8].display_name | Contempt |
| keywords[9].id | https://openalex.org/keywords/naturalness |
| keywords[9].score | 0.48263412714004517 |
| keywords[9].display_name | Naturalness |
| keywords[10].id | https://openalex.org/keywords/categorical-variable |
| keywords[10].score | 0.442658394575119 |
| keywords[10].display_name | Categorical variable |
| keywords[11].id | https://openalex.org/keywords/utterance |
| keywords[11].score | 0.4361928105354309 |
| keywords[11].display_name | Utterance |
| keywords[12].id | https://openalex.org/keywords/computer-science |
| keywords[12].score | 0.434286504983902 |
| keywords[12].display_name | Computer science |
| keywords[13].id | https://openalex.org/keywords/feeling |
| keywords[13].score | 0.4200681746006012 |
| keywords[13].display_name | Feeling |
| keywords[14].id | https://openalex.org/keywords/speech-recognition |
| keywords[14].score | 0.40672552585601807 |
| keywords[14].display_name | Speech recognition |
| keywords[15].id | https://openalex.org/keywords/social-psychology |
| keywords[15].score | 0.17874929308891296 |
| keywords[15].display_name | Social psychology |
| keywords[16].id | https://openalex.org/keywords/machine-learning |
| keywords[16].score | 0.13491776585578918 |
| keywords[16].display_name | Machine learning |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2002.01323 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | other-oa |
| locations[0].pdf_url | https://arxiv.org/pdf/2002.01323 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/other-oa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2002.01323 |
| locations[1].id | doi:10.48550/arxiv.2002.01323 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2002.01323 |
| locations[2].id | doi:10.17023/61yt-s168 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S7407051697 |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | IEEE RESOURCE CENTERS |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.17023/61yt-s168 |
| locations[3].id | doi:10.17023/qny1-fv86 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S7407051697 |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | IEEE RESOURCE CENTERS |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.17023/qny1-fv86 |
| locations[4].id | mag:3015939301 |
| locations[4].is_oa | False |
| locations[4].source | |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | |
| locations[4].raw_type | |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5078524722 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Vasudha Kowtha |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210153776 |
| authorships[0].affiliations[0].raw_affiliation_string | Apple, Inc, Cupertino, CA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I4210153776 |
| authorships[0].institutions[0].ror | https://ror.org/059hsda18 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210153776 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Apple (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Vasudha Kowtha |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Apple, Inc, Cupertino, CA, USA |
| authorships[1].author.id | https://openalex.org/A5091201226 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2721-3976 |
| authorships[1].author.display_name | Vikramjit Mitra |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210153776 |
| authorships[1].affiliations[0].raw_affiliation_string | Apple, Inc, Cupertino, CA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I4210153776 |
| authorships[1].institutions[0].ror | https://ror.org/059hsda18 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210153776 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Apple (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Vikramjit Mitra |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Apple, Inc, Cupertino, CA, USA |
| authorships[2].author.id | https://openalex.org/A5031137004 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Chris Bartels |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210153776 |
| authorships[2].affiliations[0].raw_affiliation_string | Apple, Inc, Cupertino, CA, USA |
| authorships[2].institutions[0].id | https://openalex.org/I4210153776 |
| authorships[2].institutions[0].ror | https://ror.org/059hsda18 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210153776 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Apple (United States) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chris Bartels |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Apple, Inc, Cupertino, CA, USA |
| authorships[3].author.id | https://openalex.org/A5009327522 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5335-6356 |
| authorships[3].author.display_name | Erik Marchi |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210153776 |
| authorships[3].affiliations[0].raw_affiliation_string | Apple, Inc, Cupertino, CA, USA |
| authorships[3].institutions[0].id | https://openalex.org/I4210153776 |
| authorships[3].institutions[0].ror | https://ror.org/059hsda18 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210153776 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Apple (United States) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Erik Marchi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Apple, Inc, Cupertino, CA, USA |
| authorships[4].author.id | https://openalex.org/A5086097891 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Sue Booker |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210153776 |
| authorships[4].affiliations[0].raw_affiliation_string | Apple, Inc, Cupertino, CA, USA |
| authorships[4].institutions[0].id | https://openalex.org/I4210153776 |
| authorships[4].institutions[0].ror | https://ror.org/059hsda18 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210153776 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Apple (United States) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sue Booker |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Apple, Inc, Cupertino, CA, USA |
| authorships[5].author.id | https://openalex.org/A5074222546 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | William Caruso |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210153776 |
| authorships[5].affiliations[0].raw_affiliation_string | Apple, Inc, Cupertino, CA, USA |
| authorships[5].institutions[0].id | https://openalex.org/I4210153776 |
| authorships[5].institutions[0].ror | https://ror.org/059hsda18 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210153776 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Apple (United States) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | William Caruso |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Apple, Inc, Cupertino, CA, USA |
| authorships[6].author.id | https://openalex.org/A5065814281 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Sachin Kajarekar |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210153776 |
| authorships[6].affiliations[0].raw_affiliation_string | Apple, Inc, Cupertino, CA, USA |
| authorships[6].institutions[0].id | https://openalex.org/I4210153776 |
| authorships[6].institutions[0].ror | https://ror.org/059hsda18 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210153776 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Apple (United States) |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Sachin Kajarekar |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Apple, Inc, Cupertino, CA, USA |
| authorships[7].author.id | https://openalex.org/A5113880378 |
| authorships[7].author.orcid | https://orcid.org/0009-0007-7838-1623 |
| authorships[7].author.display_name | Devang Naik |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210153776 |
| authorships[7].affiliations[0].raw_affiliation_string | Apple, Inc, Cupertino, CA, USA |
| authorships[7].institutions[0].id | https://openalex.org/I4210153776 |
| authorships[7].institutions[0].ror | https://ror.org/059hsda18 |
| authorships[7].institutions[0].type | company |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210153776 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Apple (United States) |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Devang Naik |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Apple, Inc, Cupertino, CA, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2002.01323 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detecting Emotion Primitives from Speech and their use in discerning Categorical Emotions |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10667 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3205 |
| primary_topic.subfield.display_name | Experimental and Cognitive Psychology |
| primary_topic.display_name | Emotion and Mood Recognition |
| related_works | https://openalex.org/W3004449907, https://openalex.org/W2129455854, https://openalex.org/W2596879625, https://openalex.org/W3024161007, https://openalex.org/W2184921380, https://openalex.org/W3166703267, https://openalex.org/W2802350116, https://openalex.org/W2283067672, https://openalex.org/W2095378392, https://openalex.org/W2799168007, https://openalex.org/W2232956733, https://openalex.org/W2979487532, https://openalex.org/W3186949302, https://openalex.org/W2392624341, https://openalex.org/W3114310484, https://openalex.org/W3108752444, https://openalex.org/W2554833864, https://openalex.org/W2130676972, https://openalex.org/W2005378081, https://openalex.org/W3153221018 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | pmh:oai:arXiv.org:2002.01323 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2002.01323 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2002.01323 |
| primary_location.id | pmh:oai:arXiv.org:2002.01323 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | other-oa |
| primary_location.pdf_url | https://arxiv.org/pdf/2002.01323 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/other-oa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2002.01323 |
| publication_date | 2020-01-31 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2143350951, https://openalex.org/W2972951327, https://openalex.org/W2087618018, https://openalex.org/W2401417847, https://openalex.org/W2889090126, https://openalex.org/W2109626108, https://openalex.org/W2604496056, https://openalex.org/W2239141610, https://openalex.org/W2343758848, https://openalex.org/W2115072186, https://openalex.org/W3086923691, https://openalex.org/W2288846786, https://openalex.org/W2146334809, https://openalex.org/W2090777335, https://openalex.org/W129316862, https://openalex.org/W2154074091, https://openalex.org/W2140979961 |
| referenced_works_count | 17 |
| abstract_inverted_index.- | 87 |
| abstract_inverted_index.a | 60, 78, 84, 165 |
| abstract_inverted_index.It | 103 |
| abstract_inverted_index.an | 2 |
| abstract_inverted_index.as | 14, 96, 146 |
| abstract_inverted_index.be | 139 |
| abstract_inverted_index.by | 123, 162 |
| abstract_inverted_index.in | 5 |
| abstract_inverted_index.is | 41, 67 |
| abstract_inverted_index.of | 38, 168 |
| abstract_inverted_index.on | 25 |
| abstract_inverted_index.to | 10, 58, 69, 71, 90, 127, 141 |
| abstract_inverted_index.us | 9 |
| abstract_inverted_index.Key | 45 |
| abstract_inverted_index.and | 17, 28, 54, 83, 99, 111, 151, 156 |
| abstract_inverted_index.can | 138 |
| abstract_inverted_index.for | 32, 47, 121 |
| abstract_inverted_index.how | 135 |
| abstract_inverted_index.its | 63 |
| abstract_inverted_index.the | 36, 56, 116, 128 |
| abstract_inverted_index.was | 104, 164 |
| abstract_inverted_index.30\% | 124 |
| abstract_inverted_index.LSTM | 88 |
| abstract_inverted_index.This | 75 |
| abstract_inverted_index.able | 68 |
| abstract_inverted_index.data | 65, 73 |
| abstract_inverted_index.from | 101, 153 |
| abstract_inverted_index.rely | 23 |
| abstract_inverted_index.role | 4 |
| abstract_inverted_index.such | 13, 95, 145, 169 |
| abstract_inverted_index.that | 106, 159 |
| abstract_inverted_index.this | 132 |
| abstract_inverted_index.time | 85 |
| abstract_inverted_index.used | 140 |
| abstract_inverted_index.with | 108, 125 |
| abstract_inverted_index.work | 76, 133 |
| abstract_inverted_index.(CCC) | 120 |
| abstract_inverted_index.While | 19 |
| abstract_inverted_index.given | 62 |
| abstract_inverted_index.plays | 1 |
| abstract_inverted_index.using | 112 |
| abstract_inverted_index.vocal | 39 |
| abstract_inverted_index.which | 59 |
| abstract_inverted_index.(LSTM) | 81 |
| abstract_inverted_index.anger, | 150 |
| abstract_inverted_index.better | 166 |
| abstract_inverted_index.convey | 11 |
| abstract_inverted_index.detect | 91, 142 |
| abstract_inverted_index.extent | 57 |
| abstract_inverted_index.memory | 80 |
| abstract_inverted_index.model, | 61 |
| abstract_inverted_index.models | 51 |
| abstract_inverted_index.modern | 20 |
| abstract_inverted_index.robust | 49, 113 |
| abstract_inverted_index.speech | 21, 26, 33 |
| abstract_inverted_index.unseen | 72 |
| abstract_inverted_index.Emotion | 0 |
| abstract_inverted_index.content | 34 |
| abstract_inverted_index.emotion | 50, 93, 136 |
| abstract_inverted_index.gaining | 43 |
| abstract_inverted_index.heavily | 24 |
| abstract_inverted_index.include | 52 |
| abstract_inverted_index.natural | 29 |
| abstract_inverted_index.network | 82 |
| abstract_inverted_index.neutral | 154 |
| abstract_inverted_index.respect | 126 |
| abstract_inverted_index.results | 157 |
| abstract_inverted_index.speech, | 155 |
| abstract_inverted_index.speech. | 102 |
| abstract_inverted_index.system. | 130 |
| abstract_inverted_index.arousal, | 98, 160 |
| abstract_inverted_index.baseline | 129 |
| abstract_inverted_index.building | 48 |
| abstract_inverted_index.datasets | 110 |
| abstract_inverted_index.detector | 167 |
| abstract_inverted_index.disgust, | 148 |
| abstract_inverted_index.emotions | 144 |
| abstract_inverted_index.enabling | 8 |
| abstract_inverted_index.features | 114 |
| abstract_inverted_index.feelings | 12 |
| abstract_inverted_index.followed | 161 |
| abstract_inverted_index.improved | 115 |
| abstract_inverted_index.language | 30 |
| abstract_inverted_index.multiple | 109 |
| abstract_inverted_index.observed | 105 |
| abstract_inverted_index.surprise | 152 |
| abstract_inverted_index.training | 64, 107 |
| abstract_inverted_index.valence, | 97, 122 |
| abstract_inverted_index.(TC-LSTM) | 89 |
| abstract_inverted_index.contempt, | 149 |
| abstract_inverted_index.dominance | 163 |
| abstract_inverted_index.emotions. | 170 |
| abstract_inverted_index.essential | 3 |
| abstract_inverted_index.improving | 55 |
| abstract_inverted_index.indicated | 158 |
| abstract_inverted_index.primitive | 92 |
| abstract_inverted_index.attention. | 44 |
| abstract_inverted_index.attributes | 94 |
| abstract_inverted_index.dominance, | 100 |
| abstract_inverted_index.expression | 40 |
| abstract_inverted_index.generalize | 70 |
| abstract_inverted_index.happiness, | 15, 147 |
| abstract_inverted_index.primitives | 137 |
| abstract_inverted_index.sincerity. | 18 |
| abstract_inverted_index.categorical | 143 |
| abstract_inverted_index.coefficient | 119 |
| abstract_inverted_index.concordance | 117 |
| abstract_inverted_index.conditions. | 74 |
| abstract_inverted_index.convolution | 86 |
| abstract_inverted_index.correlation | 118 |
| abstract_inverted_index.recognition | 27 |
| abstract_inverted_index.frustration, | 16 |
| abstract_inverted_index.increasingly | 42 |
| abstract_inverted_index.investigated | 77, 134 |
| abstract_inverted_index.technologies | 22 |
| abstract_inverted_index.Additionally, | 131 |
| abstract_inverted_index.distribution, | 66 |
| abstract_inverted_index.investigation | 37 |
| abstract_inverted_index.understanding | 31 |
| abstract_inverted_index.characterizing | 53 |
| abstract_inverted_index.communication, | 7 |
| abstract_inverted_index.considerations | 46 |
| abstract_inverted_index.human-to-human | 6 |
| abstract_inverted_index.long-shot-term | 79 |
| abstract_inverted_index.understanding, | 35 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |