Detecting m6A RNA modification from nanopore sequencing using a semi-supervised learning framework Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1101/2024.01.06.574484
Direct nanopore-based RNA sequencing can be used to detect post-transcriptional base modifications, such as m6A methylation, based on the electric current signals produced by the distinct chemical structures of modified bases. A key challenge is the scarcity of adequate training data with known methylation modifications. We present Xron, a hybrid encoder-decoder framework that delivers a direct methylation-distinguishing basecaller by training on synthetic RNA data and immunoprecipitation-based experimental data in two steps. First, we generate data with more diverse modification combinations through in silico cross-linking. Second, we use this dataset to train an end-to-end neural network basecaller followed by fine-tuning on immunoprecipitation-based experimental data with label-smoothing. The trained neural network basecaller outperforms existing methylation detection methods on both read-level and site-level prediction scores. Xron is a standalone, end-to-end m6A-distinguishing basecaller capable of detecting methylated bases directly from raw sequencing signals, enabling de novo methylome assembly.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2024.01.06.574484
- https://www.biorxiv.org/content/biorxiv/early/2024/01/07/2024.01.06.574484.full.pdf
- OA Status
- green
- Cited By
- 3
- References
- 60
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390660489
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390660489Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2024.01.06.574484Digital Object Identifier
- Title
-
Detecting m6A RNA modification from nanopore sequencing using a semi-supervised learning frameworkWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-07Full publication date if available
- Authors
-
Haotian Teng, Marcus H. Stoiber, Ziv Bar‐Joseph, Carl KingsfordList of authors in order
- Landing page
-
https://doi.org/10.1101/2024.01.06.574484Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2024/01/07/2024.01.06.574484.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2024/01/07/2024.01.06.574484.full.pdfDirect OA link when available
- Concepts
-
Nanopore, Nanopore sequencing, Computational biology, Computer science, Artificial intelligence, RNA, Machine learning, Biology, DNA sequencing, Nanotechnology, Materials science, Genetics, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
60Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390660489 |
|---|---|
| doi | https://doi.org/10.1101/2024.01.06.574484 |
| ids.doi | https://doi.org/10.1101/2024.01.06.574484 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38260359 |
| ids.openalex | https://openalex.org/W4390660489 |
| fwci | 1.44074168 |
| type | preprint |
| title | Detecting m6A RNA modification from nanopore sequencing using a semi-supervised learning framework |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11482 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | RNA modifications and cancer |
| topics[1].id | https://openalex.org/T10015 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9732999801635742 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Genomics and Phylogenetic Studies |
| topics[2].id | https://openalex.org/T11102 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.965499997138977 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | HVDC Systems and Fault Protection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C141795571 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7353212237358093 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q580942 |
| concepts[0].display_name | Nanopore |
| concepts[1].id | https://openalex.org/C126513998 |
| concepts[1].level | 4 |
| concepts[1].score | 0.686855137348175 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8973627 |
| concepts[1].display_name | Nanopore sequencing |
| concepts[2].id | https://openalex.org/C70721500 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5325872898101807 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[2].display_name | Computational biology |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4957057237625122 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.43865227699279785 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C67705224 |
| concepts[5].level | 3 |
| concepts[5].score | 0.421074241399765 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11053 |
| concepts[5].display_name | RNA |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.33852097392082214 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2943558096885681 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| concepts[8].id | https://openalex.org/C51679486 |
| concepts[8].level | 3 |
| concepts[8].score | 0.26568174362182617 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q380546 |
| concepts[8].display_name | DNA sequencing |
| concepts[9].id | https://openalex.org/C171250308 |
| concepts[9].level | 1 |
| concepts[9].score | 0.23405960202217102 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11468 |
| concepts[9].display_name | Nanotechnology |
| concepts[10].id | https://openalex.org/C192562407 |
| concepts[10].level | 0 |
| concepts[10].score | 0.191086083650589 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[10].display_name | Materials science |
| concepts[11].id | https://openalex.org/C54355233 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1597365438938141 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[11].display_name | Genetics |
| concepts[12].id | https://openalex.org/C104317684 |
| concepts[12].level | 2 |
| concepts[12].score | 0.12129995226860046 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[12].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/nanopore |
| keywords[0].score | 0.7353212237358093 |
| keywords[0].display_name | Nanopore |
| keywords[1].id | https://openalex.org/keywords/nanopore-sequencing |
| keywords[1].score | 0.686855137348175 |
| keywords[1].display_name | Nanopore sequencing |
| keywords[2].id | https://openalex.org/keywords/computational-biology |
| keywords[2].score | 0.5325872898101807 |
| keywords[2].display_name | Computational biology |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4957057237625122 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.43865227699279785 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/rna |
| keywords[5].score | 0.421074241399765 |
| keywords[5].display_name | RNA |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.33852097392082214 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.2943558096885681 |
| keywords[7].display_name | Biology |
| keywords[8].id | https://openalex.org/keywords/dna-sequencing |
| keywords[8].score | 0.26568174362182617 |
| keywords[8].display_name | DNA sequencing |
| keywords[9].id | https://openalex.org/keywords/nanotechnology |
| keywords[9].score | 0.23405960202217102 |
| keywords[9].display_name | Nanotechnology |
| keywords[10].id | https://openalex.org/keywords/materials-science |
| keywords[10].score | 0.191086083650589 |
| keywords[10].display_name | Materials science |
| keywords[11].id | https://openalex.org/keywords/genetics |
| keywords[11].score | 0.1597365438938141 |
| keywords[11].display_name | Genetics |
| keywords[12].id | https://openalex.org/keywords/gene |
| keywords[12].score | 0.12129995226860046 |
| keywords[12].display_name | Gene |
| language | en |
| locations[0].id | doi:10.1101/2024.01.06.574484 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nd |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2024/01/07/2024.01.06.574484.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2024.01.06.574484 |
| locations[1].id | pmid:38260359 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | bioRxiv : the preprint server for biology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38260359 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10802372 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by-nd |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10802372/pdf/nihpp-2024.01.06.574484v1.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by-nd |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | bioRxiv |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10802372 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5070239856 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0337-8722 |
| authorships[0].author.display_name | Haotian Teng |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I74973139 |
| authorships[0].affiliations[0].raw_affiliation_string | Computational Biology Department, Carnegie Mellon Univeristy, Pittsburgh PA 523, USA , , |
| authorships[0].institutions[0].id | https://openalex.org/I74973139 |
| authorships[0].institutions[0].ror | https://ror.org/05x2bcf33 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I74973139 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Carnegie Mellon University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Haotian Teng |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Computational Biology Department, Carnegie Mellon Univeristy, Pittsburgh PA 523, USA , , |
| authorships[1].author.id | https://openalex.org/A5074597014 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Marcus H. Stoiber |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210155982 |
| authorships[1].affiliations[0].raw_affiliation_string | Oxford Nanopore Technologies |
| authorships[1].institutions[0].id | https://openalex.org/I4210155982 |
| authorships[1].institutions[0].ror | https://ror.org/04hyfx005 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210155982 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Oxford Nanopore Technologies (United Kingdom) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Marcus Stoiber |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Oxford Nanopore Technologies |
| authorships[2].author.id | https://openalex.org/A5065673127 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3430-6051 |
| authorships[2].author.display_name | Ziv Bar‐Joseph |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I74973139 |
| authorships[2].affiliations[0].raw_affiliation_string | Computational Biology Department, Carnegie Mellon Univeristy, Pittsburgh PA 523, USA , , |
| authorships[2].institutions[0].id | https://openalex.org/I74973139 |
| authorships[2].institutions[0].ror | https://ror.org/05x2bcf33 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I74973139 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Carnegie Mellon University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ziv Bar-Joseph |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Computational Biology Department, Carnegie Mellon Univeristy, Pittsburgh PA 523, USA , , |
| authorships[3].author.id | https://openalex.org/A5113653378 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Carl Kingsford |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I74973139 |
| authorships[3].affiliations[0].raw_affiliation_string | Computational Biology Department, Carnegie Mellon Univeristy, Pittsburgh PA 523, USA , , |
| authorships[3].institutions[0].id | https://openalex.org/I74973139 |
| authorships[3].institutions[0].ror | https://ror.org/05x2bcf33 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I74973139 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Carnegie Mellon University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Carl Kingsford |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Computational Biology Department, Carnegie Mellon Univeristy, Pittsburgh PA 523, USA , , |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2024/01/07/2024.01.06.574484.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detecting m6A RNA modification from nanopore sequencing using a semi-supervised learning framework |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11482 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | RNA modifications and cancer |
| related_works | https://openalex.org/W2774675543, https://openalex.org/W2119052929, https://openalex.org/W2326282944, https://openalex.org/W2330402197, https://openalex.org/W3197006535, https://openalex.org/W3201371206, https://openalex.org/W2420153309, https://openalex.org/W2096970964, https://openalex.org/W3175842380, https://openalex.org/W2107323267 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1101/2024.01.06.574484 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nd |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2024/01/07/2024.01.06.574484.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2024.01.06.574484 |
| primary_location.id | doi:10.1101/2024.01.06.574484 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nd |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2024/01/07/2024.01.06.574484.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2024.01.06.574484 |
| publication_date | 2024-01-07 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4306786775, https://openalex.org/W2915777758, https://openalex.org/W2625191040, https://openalex.org/W3091905639, https://openalex.org/W4283024773, https://openalex.org/W2091724447, https://openalex.org/W2064676287, https://openalex.org/W2078964320, https://openalex.org/W2065847836, https://openalex.org/W4233030298, https://openalex.org/W2180404227, https://openalex.org/W776567260, https://openalex.org/W2461624292, https://openalex.org/W2995260704, https://openalex.org/W3197583636, https://openalex.org/W2161890613, https://openalex.org/W2899193720, https://openalex.org/W2953460056, https://openalex.org/W2955930197, https://openalex.org/W2973421587, https://openalex.org/W2922152634, https://openalex.org/W4220674994, https://openalex.org/W2160475169, https://openalex.org/W2996159306, https://openalex.org/W3016950990, https://openalex.org/W3202435251, https://openalex.org/W2950063384, https://openalex.org/W3043981686, https://openalex.org/W2982772605, https://openalex.org/W3208156641, https://openalex.org/W2910850717, https://openalex.org/W4362635637, https://openalex.org/W3119507732, https://openalex.org/W3184504420, https://openalex.org/W4221050963, https://openalex.org/W4308772822, https://openalex.org/W2062821957, https://openalex.org/W2010792435, https://openalex.org/W2632544498, https://openalex.org/W4223962268, https://openalex.org/W3156817477, https://openalex.org/W3015537910, https://openalex.org/W3104137212, https://openalex.org/W4213092805, https://openalex.org/W2752782242, https://openalex.org/W4223461291, https://openalex.org/W2591367881, https://openalex.org/W2030520626, https://openalex.org/W3125877494, https://openalex.org/W1971094148, https://openalex.org/W2127141656, https://openalex.org/W2949279762, https://openalex.org/W2086699924, https://openalex.org/W2989499631, https://openalex.org/W2789843538, https://openalex.org/W3119738125, https://openalex.org/W4224227778, https://openalex.org/W2971454256, https://openalex.org/W2126165721, https://openalex.org/W4225743429 |
| referenced_works_count | 60 |
| abstract_inverted_index.A | 32 |
| abstract_inverted_index.a | 49, 55, 125 |
| abstract_inverted_index.We | 46 |
| abstract_inverted_index.an | 92 |
| abstract_inverted_index.as | 14 |
| abstract_inverted_index.be | 6 |
| abstract_inverted_index.by | 24, 59, 98 |
| abstract_inverted_index.de | 141 |
| abstract_inverted_index.in | 69, 82 |
| abstract_inverted_index.is | 35, 124 |
| abstract_inverted_index.of | 29, 38, 131 |
| abstract_inverted_index.on | 18, 61, 100, 116 |
| abstract_inverted_index.to | 8, 90 |
| abstract_inverted_index.we | 73, 86 |
| abstract_inverted_index.RNA | 3, 63 |
| abstract_inverted_index.The | 106 |
| abstract_inverted_index.and | 65, 119 |
| abstract_inverted_index.can | 5 |
| abstract_inverted_index.key | 33 |
| abstract_inverted_index.m6A | 15 |
| abstract_inverted_index.raw | 137 |
| abstract_inverted_index.the | 19, 25, 36 |
| abstract_inverted_index.two | 70 |
| abstract_inverted_index.use | 87 |
| abstract_inverted_index.Xron | 123 |
| abstract_inverted_index.base | 11 |
| abstract_inverted_index.both | 117 |
| abstract_inverted_index.data | 41, 64, 68, 75, 103 |
| abstract_inverted_index.from | 136 |
| abstract_inverted_index.more | 77 |
| abstract_inverted_index.novo | 142 |
| abstract_inverted_index.such | 13 |
| abstract_inverted_index.that | 53 |
| abstract_inverted_index.this | 88 |
| abstract_inverted_index.used | 7 |
| abstract_inverted_index.with | 42, 76, 104 |
| abstract_inverted_index.Xron, | 48 |
| abstract_inverted_index.based | 17 |
| abstract_inverted_index.bases | 134 |
| abstract_inverted_index.known | 43 |
| abstract_inverted_index.train | 91 |
| abstract_inverted_index.Direct | 1 |
| abstract_inverted_index.First, | 72 |
| abstract_inverted_index.bases. | 31 |
| abstract_inverted_index.detect | 9 |
| abstract_inverted_index.direct | 56 |
| abstract_inverted_index.hybrid | 50 |
| abstract_inverted_index.neural | 94, 108 |
| abstract_inverted_index.silico | 83 |
| abstract_inverted_index.steps. | 71 |
| abstract_inverted_index.Second, | 85 |
| abstract_inverted_index.capable | 130 |
| abstract_inverted_index.current | 21 |
| abstract_inverted_index.dataset | 89 |
| abstract_inverted_index.diverse | 78 |
| abstract_inverted_index.methods | 115 |
| abstract_inverted_index.network | 95, 109 |
| abstract_inverted_index.present | 47 |
| abstract_inverted_index.scores. | 122 |
| abstract_inverted_index.signals | 22 |
| abstract_inverted_index.through | 81 |
| abstract_inverted_index.trained | 107 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.adequate | 39 |
| abstract_inverted_index.chemical | 27 |
| abstract_inverted_index.delivers | 54 |
| abstract_inverted_index.directly | 135 |
| abstract_inverted_index.distinct | 26 |
| abstract_inverted_index.electric | 20 |
| abstract_inverted_index.enabling | 140 |
| abstract_inverted_index.existing | 112 |
| abstract_inverted_index.followed | 97 |
| abstract_inverted_index.generate | 74 |
| abstract_inverted_index.modified | 30 |
| abstract_inverted_index.produced | 23 |
| abstract_inverted_index.scarcity | 37 |
| abstract_inverted_index.signals, | 139 |
| abstract_inverted_index.training | 40, 60 |
| abstract_inverted_index.assembly. | 144 |
| abstract_inverted_index.challenge | 34 |
| abstract_inverted_index.detecting | 132 |
| abstract_inverted_index.detection | 114 |
| abstract_inverted_index.framework | 52 |
| abstract_inverted_index.methylome | 143 |
| abstract_inverted_index.synthetic | 62 |
| abstract_inverted_index.basecaller | 58, 96, 110, 129 |
| abstract_inverted_index.end-to-end | 93, 127 |
| abstract_inverted_index.methylated | 133 |
| abstract_inverted_index.prediction | 121 |
| abstract_inverted_index.read-level | 118 |
| abstract_inverted_index.sequencing | 4, 138 |
| abstract_inverted_index.site-level | 120 |
| abstract_inverted_index.structures | 28 |
| abstract_inverted_index.fine-tuning | 99 |
| abstract_inverted_index.methylation | 44, 113 |
| abstract_inverted_index.outperforms | 111 |
| abstract_inverted_index.standalone, | 126 |
| abstract_inverted_index.combinations | 80 |
| abstract_inverted_index.experimental | 67, 102 |
| abstract_inverted_index.methylation, | 16 |
| abstract_inverted_index.modification | 79 |
| abstract_inverted_index.cross-linking. | 84 |
| abstract_inverted_index.modifications, | 12 |
| abstract_inverted_index.modifications. | 45 |
| abstract_inverted_index.nanopore-based | 2 |
| abstract_inverted_index.encoder-decoder | 51 |
| abstract_inverted_index.label-smoothing. | 105 |
| abstract_inverted_index.m6A-distinguishing | 128 |
| abstract_inverted_index.post-transcriptional | 10 |
| abstract_inverted_index.immunoprecipitation-based | 66, 101 |
| abstract_inverted_index.methylation-distinguishing | 57 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5074597014, https://openalex.org/A5070239856, https://openalex.org/A5065673127, https://openalex.org/A5113653378 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I4210155982, https://openalex.org/I74973139 |
| citation_normalized_percentile.value | 0.72438888 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |