Detecting m6A RNA modification from nanopore sequencing using a semisupervised learning framework Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1101/gr.278960.124
Direct nanopore-based RNA sequencing can be used to detect posttranscriptional base modifications, such as N6-methyladenosine (m6A) methylation, based on the electric current signals produced by the distinct chemical structures of modified bases. A key challenge is the scarcity of adequate training data with known methylation modifications. We present Xron, a hybrid encoder–decoder framework that delivers a direct methylation-distinguishing basecaller by training on synthetic RNA data and immunoprecipitation (IP)-based experimental data in two steps. First, we generate data with more diverse modification combinations through in silico cross-linking. Second, we use this data set to train an end-to-end neural network basecaller followed by fine-tuning on IP-based experimental data with label smoothing. The trained neural network basecaller outperforms existing methylation detection methods on both read-level and site-level prediction scores. Xron is a standalone, end-to-end m6A-distinguishing basecaller capable of detecting methylated bases directly from raw sequencing signals, enabling de novo methylome assembly.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1101/gr.278960.124
- https://genome.cshlp.org/content/early/2024/10/10/gr.278960.124.full.pdf
- OA Status
- hybrid
- Cited By
- 9
- References
- 57
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403415582
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403415582Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/gr.278960.124Digital Object Identifier
- Title
-
Detecting m6A RNA modification from nanopore sequencing using a semisupervised learning frameworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-15Full publication date if available
- Authors
-
Haotian Teng, Marcus H. Stoiber, Ziv Bar‐Joseph, Carl KingsfordList of authors in order
- Landing page
-
https://doi.org/10.1101/gr.278960.124Publisher landing page
- PDF URL
-
https://genome.cshlp.org/content/early/2024/10/10/gr.278960.124.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://genome.cshlp.org/content/early/2024/10/10/gr.278960.124.full.pdfDirect OA link when available
- Concepts
-
Biology, Computational biology, Methylation, In silico, RNA, RNA methylation, Computer science, Artificial intelligence, Machine learning, Gene, Genetics, MethyltransferaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
57Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403415582 |
|---|---|
| doi | https://doi.org/10.1101/gr.278960.124 |
| ids.doi | https://doi.org/10.1101/gr.278960.124 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39406497 |
| ids.openalex | https://openalex.org/W4403415582 |
| fwci | 4.32222503 |
| mesh[0].qualifier_ui | Q000379 |
| mesh[0].descriptor_ui | D000081414 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | methods |
| mesh[0].descriptor_name | Nanopore Sequencing |
| mesh[1].qualifier_ui | Q000031 |
| mesh[1].descriptor_ui | D000241 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | analogs & derivatives |
| mesh[1].descriptor_name | Adenosine |
| mesh[2].qualifier_ui | Q000378 |
| mesh[2].descriptor_ui | D000241 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | metabolism |
| mesh[2].descriptor_name | Adenosine |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D008745 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Methylation |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D006801 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Humans |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D016571 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Neural Networks, Computer |
| mesh[6].qualifier_ui | Q000235 |
| mesh[6].descriptor_ui | D012313 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | genetics |
| mesh[6].descriptor_name | RNA |
| mesh[7].qualifier_ui | Q000737 |
| mesh[7].descriptor_ui | D012313 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | chemistry |
| mesh[7].descriptor_name | RNA |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D012323 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | RNA Processing, Post-Transcriptional |
| mesh[9].qualifier_ui | Q000379 |
| mesh[9].descriptor_ui | D017423 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | methods |
| mesh[9].descriptor_name | Sequence Analysis, RNA |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D000069550 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Machine Learning |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000097906 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | RNA Methylation |
| mesh[12].qualifier_ui | Q000379 |
| mesh[12].descriptor_ui | D000081414 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | methods |
| mesh[12].descriptor_name | Nanopore Sequencing |
| mesh[13].qualifier_ui | Q000031 |
| mesh[13].descriptor_ui | D000241 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | analogs & derivatives |
| mesh[13].descriptor_name | Adenosine |
| mesh[14].qualifier_ui | Q000378 |
| mesh[14].descriptor_ui | D000241 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | metabolism |
| mesh[14].descriptor_name | Adenosine |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D008745 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Methylation |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D006801 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Humans |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D016571 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Neural Networks, Computer |
| mesh[18].qualifier_ui | Q000235 |
| mesh[18].descriptor_ui | D012313 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | genetics |
| mesh[18].descriptor_name | RNA |
| mesh[19].qualifier_ui | Q000737 |
| mesh[19].descriptor_ui | D012313 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | chemistry |
| mesh[19].descriptor_name | RNA |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D012323 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | RNA Processing, Post-Transcriptional |
| mesh[21].qualifier_ui | Q000379 |
| mesh[21].descriptor_ui | D017423 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | methods |
| mesh[21].descriptor_name | Sequence Analysis, RNA |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D000069550 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Machine Learning |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D000097906 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | RNA Methylation |
| mesh[24].qualifier_ui | Q000379 |
| mesh[24].descriptor_ui | D000081414 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | methods |
| mesh[24].descriptor_name | Nanopore Sequencing |
| mesh[25].qualifier_ui | Q000031 |
| mesh[25].descriptor_ui | D000241 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | analogs & derivatives |
| mesh[25].descriptor_name | Adenosine |
| mesh[26].qualifier_ui | Q000378 |
| mesh[26].descriptor_ui | D000241 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | metabolism |
| mesh[26].descriptor_name | Adenosine |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D008745 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Methylation |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D006801 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Humans |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D016571 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Neural Networks, Computer |
| mesh[30].qualifier_ui | Q000235 |
| mesh[30].descriptor_ui | D012313 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | genetics |
| mesh[30].descriptor_name | RNA |
| mesh[31].qualifier_ui | Q000737 |
| mesh[31].descriptor_ui | D012313 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | chemistry |
| mesh[31].descriptor_name | RNA |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D012323 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | RNA Processing, Post-Transcriptional |
| mesh[33].qualifier_ui | Q000379 |
| mesh[33].descriptor_ui | D017423 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | methods |
| mesh[33].descriptor_name | Sequence Analysis, RNA |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D000069550 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Machine Learning |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D000097906 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | RNA Methylation |
| type | article |
| title | Detecting m6A RNA modification from nanopore sequencing using a semisupervised learning framework |
| awards[0].id | https://openalex.org/G3788099519 |
| awards[0].funder_id | https://openalex.org/F4320332161 |
| awards[0].display_name | |
| awards[0].funder_award_id | R01HG012470 |
| awards[0].funder_display_name | National Institutes of Health |
| awards[1].id | https://openalex.org/G3858817854 |
| awards[1].funder_id | https://openalex.org/F4320306076 |
| awards[1].display_name | |
| awards[1].funder_award_id | III-2232121 |
| awards[1].funder_display_name | National Science Foundation |
| awards[2].id | https://openalex.org/G7686337660 |
| awards[2].funder_id | https://openalex.org/F4320306076 |
| awards[2].display_name | |
| awards[2].funder_award_id | DBI-1937540 |
| awards[2].funder_display_name | National Science Foundation |
| biblio.issue | 11 |
| biblio.volume | 34 |
| biblio.last_page | 1999 |
| biblio.first_page | 1987 |
| topics[0].id | https://openalex.org/T11482 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9957000017166138 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | RNA modifications and cancer |
| topics[1].id | https://openalex.org/T10015 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.965399980545044 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Genomics and Phylogenetic Studies |
| topics[2].id | https://openalex.org/T10181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9531000256538391 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Natural Language Processing Techniques |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| funders[1].id | https://openalex.org/F4320310207 |
| funders[1].ror | https://ror.org/05x2bcf33 |
| funders[1].display_name | Carnegie Mellon University |
| funders[2].id | https://openalex.org/F4320332161 |
| funders[2].ror | https://ror.org/01cwqze88 |
| funders[2].display_name | National Institutes of Health |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C86803240 |
| concepts[0].level | 0 |
| concepts[0].score | 0.638028621673584 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[0].display_name | Biology |
| concepts[1].id | https://openalex.org/C70721500 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5775910019874573 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[1].display_name | Computational biology |
| concepts[2].id | https://openalex.org/C33288867 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5764986276626587 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q518328 |
| concepts[2].display_name | Methylation |
| concepts[3].id | https://openalex.org/C2775905019 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5676358938217163 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192572 |
| concepts[3].display_name | In silico |
| concepts[4].id | https://openalex.org/C67705224 |
| concepts[4].level | 3 |
| concepts[4].score | 0.49527207016944885 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11053 |
| concepts[4].display_name | RNA |
| concepts[5].id | https://openalex.org/C2909856833 |
| concepts[5].level | 5 |
| concepts[5].score | 0.46214544773101807 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q518328 |
| concepts[5].display_name | RNA methylation |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.45298629999160767 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.41782814264297485 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3581298589706421 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C104317684 |
| concepts[9].level | 2 |
| concepts[9].score | 0.23003384470939636 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[9].display_name | Gene |
| concepts[10].id | https://openalex.org/C54355233 |
| concepts[10].level | 1 |
| concepts[10].score | 0.21304184198379517 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[10].display_name | Genetics |
| concepts[11].id | https://openalex.org/C91965660 |
| concepts[11].level | 4 |
| concepts[11].score | 0.07417112588882446 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q415875 |
| concepts[11].display_name | Methyltransferase |
| keywords[0].id | https://openalex.org/keywords/biology |
| keywords[0].score | 0.638028621673584 |
| keywords[0].display_name | Biology |
| keywords[1].id | https://openalex.org/keywords/computational-biology |
| keywords[1].score | 0.5775910019874573 |
| keywords[1].display_name | Computational biology |
| keywords[2].id | https://openalex.org/keywords/methylation |
| keywords[2].score | 0.5764986276626587 |
| keywords[2].display_name | Methylation |
| keywords[3].id | https://openalex.org/keywords/in-silico |
| keywords[3].score | 0.5676358938217163 |
| keywords[3].display_name | In silico |
| keywords[4].id | https://openalex.org/keywords/rna |
| keywords[4].score | 0.49527207016944885 |
| keywords[4].display_name | RNA |
| keywords[5].id | https://openalex.org/keywords/rna-methylation |
| keywords[5].score | 0.46214544773101807 |
| keywords[5].display_name | RNA methylation |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.45298629999160767 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.41782814264297485 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.3581298589706421 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/gene |
| keywords[9].score | 0.23003384470939636 |
| keywords[9].display_name | Gene |
| keywords[10].id | https://openalex.org/keywords/genetics |
| keywords[10].score | 0.21304184198379517 |
| keywords[10].display_name | Genetics |
| keywords[11].id | https://openalex.org/keywords/methyltransferase |
| keywords[11].score | 0.07417112588882446 |
| keywords[11].display_name | Methyltransferase |
| language | en |
| locations[0].id | doi:10.1101/gr.278960.124 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43092948 |
| locations[0].source.issn | 1088-9051, 1549-5469 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1088-9051 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Genome Research |
| locations[0].source.host_organization | https://openalex.org/P4310315909 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315909 |
| locations[0].source.host_organization_lineage_names | Cold Spring Harbor Laboratory Press |
| locations[0].license | |
| locations[0].pdf_url | https://genome.cshlp.org/content/early/2024/10/10/gr.278960.124.full.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Genome Research |
| locations[0].landing_page_url | https://doi.org/10.1101/gr.278960.124 |
| locations[1].id | pmid:39406497 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Genome research |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39406497 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11610579 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Genome Res |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11610579 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5070239856 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0337-8722 |
| authorships[0].author.display_name | Haotian Teng |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I74973139 |
| authorships[0].affiliations[0].raw_affiliation_string | 1 Carnegie Mellon University |
| authorships[0].institutions[0].id | https://openalex.org/I74973139 |
| authorships[0].institutions[0].ror | https://ror.org/05x2bcf33 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I74973139 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Carnegie Mellon University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Haotian Teng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | 1 Carnegie Mellon University |
| authorships[1].author.id | https://openalex.org/A5074597014 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Marcus H. Stoiber |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210155982 |
| authorships[1].affiliations[0].raw_affiliation_string | 2 Oxford Nanopore Technologies |
| authorships[1].institutions[0].id | https://openalex.org/I4210155982 |
| authorships[1].institutions[0].ror | https://ror.org/04hyfx005 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210155982 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Oxford Nanopore Technologies (United Kingdom) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Marcus Stoiber |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | 2 Oxford Nanopore Technologies |
| authorships[2].author.id | https://openalex.org/A5065673127 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3430-6051 |
| authorships[2].author.display_name | Ziv Bar‐Joseph |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I74973139 |
| authorships[2].affiliations[0].raw_affiliation_string | 1 Carnegie Mellon University |
| authorships[2].institutions[0].id | https://openalex.org/I74973139 |
| authorships[2].institutions[0].ror | https://ror.org/05x2bcf33 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I74973139 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Carnegie Mellon University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ziv Bar-Joseph |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | 1 Carnegie Mellon University |
| authorships[3].author.id | https://openalex.org/A5058132020 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0118-5516 |
| authorships[3].author.display_name | Carl Kingsford |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I74973139 |
| authorships[3].affiliations[0].raw_affiliation_string | 1 Carnegie Mellon University |
| authorships[3].institutions[0].id | https://openalex.org/I74973139 |
| authorships[3].institutions[0].ror | https://ror.org/05x2bcf33 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I74973139 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Carnegie Mellon University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Carl Kingsford |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | 1 Carnegie Mellon University |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://genome.cshlp.org/content/early/2024/10/10/gr.278960.124.full.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detecting m6A RNA modification from nanopore sequencing using a semisupervised learning framework |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11482 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9957000017166138 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | RNA modifications and cancer |
| related_works | https://openalex.org/W4296034215, https://openalex.org/W4281776466, https://openalex.org/W1969931899, https://openalex.org/W2012031178, https://openalex.org/W2754983795, https://openalex.org/W1482953112, https://openalex.org/W1970572429, https://openalex.org/W2337903562, https://openalex.org/W4393151738, https://openalex.org/W2027174651 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1101/gr.278960.124 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43092948 |
| best_oa_location.source.issn | 1088-9051, 1549-5469 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1088-9051 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Genome Research |
| best_oa_location.source.host_organization | https://openalex.org/P4310315909 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315909 |
| best_oa_location.source.host_organization_lineage_names | Cold Spring Harbor Laboratory Press |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://genome.cshlp.org/content/early/2024/10/10/gr.278960.124.full.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Genome Research |
| best_oa_location.landing_page_url | https://doi.org/10.1101/gr.278960.124 |
| primary_location.id | doi:10.1101/gr.278960.124 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43092948 |
| primary_location.source.issn | 1088-9051, 1549-5469 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1088-9051 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Genome Research |
| primary_location.source.host_organization | https://openalex.org/P4310315909 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315909 |
| primary_location.source.host_organization_lineage_names | Cold Spring Harbor Laboratory Press |
| primary_location.license | |
| primary_location.pdf_url | https://genome.cshlp.org/content/early/2024/10/10/gr.278960.124.full.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Genome Research |
| primary_location.landing_page_url | https://doi.org/10.1101/gr.278960.124 |
| publication_date | 2024-10-15 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4223962268, https://openalex.org/W4396773463, https://openalex.org/W2010792435, https://openalex.org/W2086699924, https://openalex.org/W4306786775, https://openalex.org/W2064676287, https://openalex.org/W2161890613, https://openalex.org/W4233030298, https://openalex.org/W3156817477, https://openalex.org/W2625191040, https://openalex.org/W3197583636, https://openalex.org/W2065847836, https://openalex.org/W2091724447, https://openalex.org/W3119738125, https://openalex.org/W2950063384, https://openalex.org/W2953460056, https://openalex.org/W2127141656, https://openalex.org/W2996159306, https://openalex.org/W4308772822, https://openalex.org/W2752782242, https://openalex.org/W4220674994, https://openalex.org/W3104137212, https://openalex.org/W2030520626, https://openalex.org/W3043981686, https://openalex.org/W2180404227, https://openalex.org/W2632544498, https://openalex.org/W2922152634, https://openalex.org/W2995260704, https://openalex.org/W3015537910, https://openalex.org/W4225743429, https://openalex.org/W2789843538, https://openalex.org/W2108234281, https://openalex.org/W776567260, https://openalex.org/W2971454256, https://openalex.org/W2980511028, https://openalex.org/W2899193720, https://openalex.org/W3016950990, https://openalex.org/W1971094148, https://openalex.org/W2973421587, https://openalex.org/W2078964320, https://openalex.org/W2461624292, https://openalex.org/W4283024773, https://openalex.org/W4224227778, https://openalex.org/W2999689892, https://openalex.org/W3184504420, https://openalex.org/W3091905639, https://openalex.org/W2160475169, https://openalex.org/W2062821957, https://openalex.org/W4223461291, https://openalex.org/W2591367881, https://openalex.org/W2915777758, https://openalex.org/W2949279762, https://openalex.org/W3208156641, https://openalex.org/W2989499631, https://openalex.org/W2955930197, https://openalex.org/W3202435251, https://openalex.org/W4362635637 |
| referenced_works_count | 57 |
| abstract_inverted_index.A | 32 |
| abstract_inverted_index.a | 49, 55, 128 |
| abstract_inverted_index.We | 46 |
| abstract_inverted_index.an | 94 |
| abstract_inverted_index.as | 13 |
| abstract_inverted_index.be | 5 |
| abstract_inverted_index.by | 24, 59, 100 |
| abstract_inverted_index.de | 144 |
| abstract_inverted_index.in | 70, 83 |
| abstract_inverted_index.is | 35, 127 |
| abstract_inverted_index.of | 29, 38, 134 |
| abstract_inverted_index.on | 18, 61, 102, 119 |
| abstract_inverted_index.to | 7, 92 |
| abstract_inverted_index.we | 74, 87 |
| abstract_inverted_index.RNA | 2, 63 |
| abstract_inverted_index.The | 109 |
| abstract_inverted_index.and | 65, 122 |
| abstract_inverted_index.can | 4 |
| abstract_inverted_index.key | 33 |
| abstract_inverted_index.raw | 140 |
| abstract_inverted_index.set | 91 |
| abstract_inverted_index.the | 19, 25, 36 |
| abstract_inverted_index.two | 71 |
| abstract_inverted_index.use | 88 |
| abstract_inverted_index.Xron | 126 |
| abstract_inverted_index.base | 10 |
| abstract_inverted_index.both | 120 |
| abstract_inverted_index.data | 41, 64, 69, 76, 90, 105 |
| abstract_inverted_index.from | 139 |
| abstract_inverted_index.more | 78 |
| abstract_inverted_index.novo | 145 |
| abstract_inverted_index.such | 12 |
| abstract_inverted_index.that | 53 |
| abstract_inverted_index.this | 89 |
| abstract_inverted_index.used | 6 |
| abstract_inverted_index.with | 42, 77, 106 |
| abstract_inverted_index.(m6A) | 15 |
| abstract_inverted_index.Xron, | 48 |
| abstract_inverted_index.based | 17 |
| abstract_inverted_index.bases | 137 |
| abstract_inverted_index.known | 43 |
| abstract_inverted_index.label | 107 |
| abstract_inverted_index.train | 93 |
| abstract_inverted_index.Direct | 0 |
| abstract_inverted_index.First, | 73 |
| abstract_inverted_index.bases. | 31 |
| abstract_inverted_index.detect | 8 |
| abstract_inverted_index.direct | 56 |
| abstract_inverted_index.hybrid | 50 |
| abstract_inverted_index.neural | 96, 111 |
| abstract_inverted_index.silico | 84 |
| abstract_inverted_index.steps. | 72 |
| abstract_inverted_index.Second, | 86 |
| abstract_inverted_index.capable | 133 |
| abstract_inverted_index.current | 21 |
| abstract_inverted_index.diverse | 79 |
| abstract_inverted_index.methods | 118 |
| abstract_inverted_index.network | 97, 112 |
| abstract_inverted_index.present | 47 |
| abstract_inverted_index.scores. | 125 |
| abstract_inverted_index.signals | 22 |
| abstract_inverted_index.through | 82 |
| abstract_inverted_index.trained | 110 |
| abstract_inverted_index.IP-based | 103 |
| abstract_inverted_index.adequate | 39 |
| abstract_inverted_index.chemical | 27 |
| abstract_inverted_index.delivers | 54 |
| abstract_inverted_index.directly | 138 |
| abstract_inverted_index.distinct | 26 |
| abstract_inverted_index.electric | 20 |
| abstract_inverted_index.enabling | 143 |
| abstract_inverted_index.existing | 115 |
| abstract_inverted_index.followed | 99 |
| abstract_inverted_index.generate | 75 |
| abstract_inverted_index.modified | 30 |
| abstract_inverted_index.produced | 23 |
| abstract_inverted_index.scarcity | 37 |
| abstract_inverted_index.signals, | 142 |
| abstract_inverted_index.training | 40, 60 |
| abstract_inverted_index.assembly. | 147 |
| abstract_inverted_index.challenge | 34 |
| abstract_inverted_index.detecting | 135 |
| abstract_inverted_index.detection | 117 |
| abstract_inverted_index.framework | 52 |
| abstract_inverted_index.methylome | 146 |
| abstract_inverted_index.synthetic | 62 |
| abstract_inverted_index.(IP)-based | 67 |
| abstract_inverted_index.basecaller | 58, 98, 113, 132 |
| abstract_inverted_index.end-to-end | 95, 130 |
| abstract_inverted_index.methylated | 136 |
| abstract_inverted_index.prediction | 124 |
| abstract_inverted_index.read-level | 121 |
| abstract_inverted_index.sequencing | 3, 141 |
| abstract_inverted_index.site-level | 123 |
| abstract_inverted_index.smoothing. | 108 |
| abstract_inverted_index.structures | 28 |
| abstract_inverted_index.fine-tuning | 101 |
| abstract_inverted_index.methylation | 44, 116 |
| abstract_inverted_index.outperforms | 114 |
| abstract_inverted_index.standalone, | 129 |
| abstract_inverted_index.combinations | 81 |
| abstract_inverted_index.experimental | 68, 104 |
| abstract_inverted_index.methylation, | 16 |
| abstract_inverted_index.modification | 80 |
| abstract_inverted_index.cross-linking. | 85 |
| abstract_inverted_index.modifications, | 11 |
| abstract_inverted_index.modifications. | 45 |
| abstract_inverted_index.nanopore-based | 1 |
| abstract_inverted_index.encoder–decoder | 51 |
| abstract_inverted_index.N6-methyladenosine | 14 |
| abstract_inverted_index.m6A-distinguishing | 131 |
| abstract_inverted_index.immunoprecipitation | 66 |
| abstract_inverted_index.posttranscriptional | 9 |
| abstract_inverted_index.methylation-distinguishing | 57 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.91555484 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |