Detecting Message Modification Attacks on the CAN Bus with Temporal Convolutional Networks Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.5220/0010445504880496
Multiple attacks have shown that in-vehicle networks have vulnerabilities\nwhich can be exploited. Securing the Controller Area Network (CAN) for modern\nvehicles has become a necessary task for car manufacturers. Some attacks inject\npotentially large amount of fake messages into the CAN network; however, such\nattacks are relatively easy to detect. In more sophisticated attacks, the\noriginal messages are modified, making the detection a more complex problem. In\nthis paper, we present a novel machine learning based intrusion detection\nmethod for CAN networks. We focus on detecting message modification attacks,\nwhich do not change the timing patterns of communications. Our proposed\ntemporal convolutional network-based solution can learn the normal behavior of\nCAN signals and differentiate them from malicious ones. The method is evaluated\non multiple CAN-bus message IDs from two public datasets including different\ntypes of attacks. Performance results show that our lightweight approach\ncompares favorably to the state-of-the-art unsupervised learning approach,\nachieving similar or better accuracy for a wide range of scenarios with a\nsignificantly lower false positive rate.\n
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5220/0010445504880496
- OA Status
- hybrid
- Cited By
- 3
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3160093313
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3160093313Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5220/0010445504880496Digital Object Identifier
- Title
-
Detecting Message Modification Attacks on the CAN Bus with Temporal Convolutional NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Irina Chiscop, András Gazdag, Joost Bosman, Gergely BiczókList of authors in order
- Landing page
-
https://doi.org/10.5220/0010445504880496Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5220/0010445504880496Direct OA link when available
- Concepts
-
Computer science, Intrusion detection system, Focus (optics), Task (project management), CAN bus, State (computer science), Convolutional neural network, False positive rate, Computer network, Artificial intelligence, Real-time computing, Machine learning, Physics, Optics, Algorithm, Management, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3160093313 |
|---|---|
| doi | https://doi.org/10.5220/0010445504880496 |
| ids.doi | https://doi.org/10.5220/0010445504880496 |
| ids.mag | 3160093313 |
| ids.openalex | https://openalex.org/W3160093313 |
| fwci | 0.87514325 |
| type | article |
| title | Detecting Message Modification Attacks on the CAN Bus with Temporal Convolutional Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 496 |
| biblio.first_page | 488 |
| topics[0].id | https://openalex.org/T10761 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9973000288009644 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Vehicular Ad Hoc Networks (VANETs) |
| topics[1].id | https://openalex.org/T10800 |
| topics[1].field.id | https://openalex.org/fields/30 |
| topics[1].field.display_name | Pharmacology, Toxicology and Pharmaceutics |
| topics[1].score | 0.9390000104904175 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3005 |
| topics[1].subfield.display_name | Toxicology |
| topics[1].display_name | Forensic Toxicology and Drug Analysis |
| topics[2].id | https://openalex.org/T10400 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9038000106811523 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Network Security and Intrusion Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8647011518478394 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C35525427 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6015894412994385 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q745881 |
| concepts[1].display_name | Intrusion detection system |
| concepts[2].id | https://openalex.org/C192209626 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5755710005760193 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[2].display_name | Focus (optics) |
| concepts[3].id | https://openalex.org/C2780451532 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5687617659568787 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[3].display_name | Task (project management) |
| concepts[4].id | https://openalex.org/C201762086 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5013184547424316 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q728183 |
| concepts[4].display_name | CAN bus |
| concepts[5].id | https://openalex.org/C48103436 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45570099353790283 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q599031 |
| concepts[5].display_name | State (computer science) |
| concepts[6].id | https://openalex.org/C81363708 |
| concepts[6].level | 2 |
| concepts[6].score | 0.455244243144989 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[6].display_name | Convolutional neural network |
| concepts[7].id | https://openalex.org/C95922358 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4314943552017212 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5432725 |
| concepts[7].display_name | False positive rate |
| concepts[8].id | https://openalex.org/C31258907 |
| concepts[8].level | 1 |
| concepts[8].score | 0.34428608417510986 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[8].display_name | Computer network |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3389216959476471 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C79403827 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3359316289424896 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[10].display_name | Real-time computing |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.32098716497421265 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C120665830 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[13].display_name | Optics |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C187736073 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[15].display_name | Management |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8647011518478394 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/intrusion-detection-system |
| keywords[1].score | 0.6015894412994385 |
| keywords[1].display_name | Intrusion detection system |
| keywords[2].id | https://openalex.org/keywords/focus |
| keywords[2].score | 0.5755710005760193 |
| keywords[2].display_name | Focus (optics) |
| keywords[3].id | https://openalex.org/keywords/task |
| keywords[3].score | 0.5687617659568787 |
| keywords[3].display_name | Task (project management) |
| keywords[4].id | https://openalex.org/keywords/can-bus |
| keywords[4].score | 0.5013184547424316 |
| keywords[4].display_name | CAN bus |
| keywords[5].id | https://openalex.org/keywords/state |
| keywords[5].score | 0.45570099353790283 |
| keywords[5].display_name | State (computer science) |
| keywords[6].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[6].score | 0.455244243144989 |
| keywords[6].display_name | Convolutional neural network |
| keywords[7].id | https://openalex.org/keywords/false-positive-rate |
| keywords[7].score | 0.4314943552017212 |
| keywords[7].display_name | False positive rate |
| keywords[8].id | https://openalex.org/keywords/computer-network |
| keywords[8].score | 0.34428608417510986 |
| keywords[8].display_name | Computer network |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.3389216959476471 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/real-time-computing |
| keywords[10].score | 0.3359316289424896 |
| keywords[10].display_name | Real-time computing |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.32098716497421265 |
| keywords[11].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.5220/0010445504880496 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4363609010 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the 7th International Conference on Vehicle Technology and Intelligent Transport Systems |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 7th International Conference on Vehicle Technology and Intelligent Transport Systems |
| locations[0].landing_page_url | https://doi.org/10.5220/0010445504880496 |
| locations[1].id | pmh:oai:arXiv.org:2106.08692 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by-nc-sa |
| locations[1].pdf_url | https://arxiv.org/pdf/2106.08692 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2106.08692 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5070733813 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1249-8518 |
| authorships[0].author.display_name | Irina Chiscop |
| authorships[0].affiliations[0].raw_affiliation_string | Cyber Security & Robustness Department, TNO, The Hague, The Netherlands, --- Select a Country --- |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Irina Chiscop |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Cyber Security & Robustness Department, TNO, The Hague, The Netherlands, --- Select a Country --- |
| authorships[1].author.id | https://openalex.org/A5057597065 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | András Gazdag |
| authorships[1].countries | HU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I29770179 |
| authorships[1].affiliations[0].raw_affiliation_string | CrySyS Lab., Dept. of Networked Systems and Services, Budapest University of Technology and Economics, Budapest, Hungary, --- Select a Country --- |
| authorships[1].institutions[0].id | https://openalex.org/I29770179 |
| authorships[1].institutions[0].ror | https://ror.org/02w42ss30 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I29770179 |
| authorships[1].institutions[0].country_code | HU |
| authorships[1].institutions[0].display_name | Budapest University of Technology and Economics |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | András Gazdag |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | CrySyS Lab., Dept. of Networked Systems and Services, Budapest University of Technology and Economics, Budapest, Hungary, --- Select a Country --- |
| authorships[2].author.id | https://openalex.org/A5035991190 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Joost Bosman |
| authorships[2].affiliations[0].raw_affiliation_string | Cyber Security & Robustness Department, TNO, The Hague, The Netherlands, --- Select a Country --- |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Joost Bosman |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Cyber Security & Robustness Department, TNO, The Hague, The Netherlands, --- Select a Country --- |
| authorships[3].author.id | https://openalex.org/A5002026615 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3891-3855 |
| authorships[3].author.display_name | Gergely Biczók |
| authorships[3].countries | HU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I29770179 |
| authorships[3].affiliations[0].raw_affiliation_string | CrySyS Lab., Dept. of Networked Systems and Services, Budapest University of Technology and Economics, Budapest, Hungary, --- Select a Country --- |
| authorships[3].institutions[0].id | https://openalex.org/I29770179 |
| authorships[3].institutions[0].ror | https://ror.org/02w42ss30 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I29770179 |
| authorships[3].institutions[0].country_code | HU |
| authorships[3].institutions[0].display_name | Budapest University of Technology and Economics |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Gergely Biczók |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | CrySyS Lab., Dept. of Networked Systems and Services, Budapest University of Technology and Economics, Budapest, Hungary, --- Select a Country --- |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5220/0010445504880496 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detecting Message Modification Attacks on the CAN Bus with Temporal Convolutional Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10761 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9973000288009644 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Vehicular Ad Hoc Networks (VANETs) |
| related_works | https://openalex.org/W4293226380, https://openalex.org/W2357468538, https://openalex.org/W1577110157, https://openalex.org/W2393267898, https://openalex.org/W2369874171, https://openalex.org/W2383301100, https://openalex.org/W2392864074, https://openalex.org/W2352639800, https://openalex.org/W3112374511, https://openalex.org/W2931259 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.5220/0010445504880496 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4363609010 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the 7th International Conference on Vehicle Technology and Intelligent Transport Systems |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 7th International Conference on Vehicle Technology and Intelligent Transport Systems |
| best_oa_location.landing_page_url | https://doi.org/10.5220/0010445504880496 |
| primary_location.id | doi:10.5220/0010445504880496 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4363609010 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the 7th International Conference on Vehicle Technology and Intelligent Transport Systems |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 7th International Conference on Vehicle Technology and Intelligent Transport Systems |
| primary_location.landing_page_url | https://doi.org/10.5220/0010445504880496 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2883344982, https://openalex.org/W2792764867, https://openalex.org/W2786055572, https://openalex.org/W2979202956, https://openalex.org/W2296701710, https://openalex.org/W2949382160, https://openalex.org/W2953352227, https://openalex.org/W2950091912, https://openalex.org/W2957392670, https://openalex.org/W2133854595, https://openalex.org/W2916772464, https://openalex.org/W2881818180, https://openalex.org/W3089775054, https://openalex.org/W2561208905, https://openalex.org/W2972440122, https://openalex.org/W2948384692, https://openalex.org/W2924845865, https://openalex.org/W3024915052, https://openalex.org/W3092232275, https://openalex.org/W2605933137, https://openalex.org/W3043071944, https://openalex.org/W2545810962, https://openalex.org/W2925106679 |
| referenced_works_count | 23 |
| abstract_inverted_index.a | 22, 58, 66, 144 |
| abstract_inverted_index.In | 47 |
| abstract_inverted_index.We | 76 |
| abstract_inverted_index.be | 10 |
| abstract_inverted_index.do | 83 |
| abstract_inverted_index.is | 111 |
| abstract_inverted_index.of | 33, 89, 123, 147 |
| abstract_inverted_index.on | 78 |
| abstract_inverted_index.or | 140 |
| abstract_inverted_index.to | 45, 133 |
| abstract_inverted_index.we | 64 |
| abstract_inverted_index.CAN | 38, 74 |
| abstract_inverted_index.IDs | 116 |
| abstract_inverted_index.Our | 91 |
| abstract_inverted_index.The | 109 |
| abstract_inverted_index.and | 103 |
| abstract_inverted_index.are | 42, 53 |
| abstract_inverted_index.can | 9, 96 |
| abstract_inverted_index.car | 26 |
| abstract_inverted_index.for | 18, 25, 73, 143 |
| abstract_inverted_index.has | 20 |
| abstract_inverted_index.not | 84 |
| abstract_inverted_index.our | 129 |
| abstract_inverted_index.the | 13, 37, 56, 86, 98, 134 |
| abstract_inverted_index.two | 118 |
| abstract_inverted_index.Area | 15 |
| abstract_inverted_index.Some | 28 |
| abstract_inverted_index.easy | 44 |
| abstract_inverted_index.fake | 34 |
| abstract_inverted_index.from | 106, 117 |
| abstract_inverted_index.have | 2, 7 |
| abstract_inverted_index.into | 36 |
| abstract_inverted_index.more | 48, 59 |
| abstract_inverted_index.show | 127 |
| abstract_inverted_index.task | 24 |
| abstract_inverted_index.that | 4, 128 |
| abstract_inverted_index.them | 105 |
| abstract_inverted_index.wide | 145 |
| abstract_inverted_index.with | 149 |
| abstract_inverted_index.(CAN) | 17 |
| abstract_inverted_index.based | 70 |
| abstract_inverted_index.false | 152 |
| abstract_inverted_index.focus | 77 |
| abstract_inverted_index.large | 31 |
| abstract_inverted_index.learn | 97 |
| abstract_inverted_index.lower | 151 |
| abstract_inverted_index.novel | 67 |
| abstract_inverted_index.ones. | 108 |
| abstract_inverted_index.range | 146 |
| abstract_inverted_index.shown | 3 |
| abstract_inverted_index.amount | 32 |
| abstract_inverted_index.become | 21 |
| abstract_inverted_index.better | 141 |
| abstract_inverted_index.change | 85 |
| abstract_inverted_index.making | 55 |
| abstract_inverted_index.method | 110 |
| abstract_inverted_index.normal | 99 |
| abstract_inverted_index.paper, | 63 |
| abstract_inverted_index.public | 119 |
| abstract_inverted_index.timing | 87 |
| abstract_inverted_index.CAN-bus | 114 |
| abstract_inverted_index.Network | 16 |
| abstract_inverted_index.attacks | 1, 29 |
| abstract_inverted_index.complex | 60 |
| abstract_inverted_index.detect. | 46 |
| abstract_inverted_index.machine | 68 |
| abstract_inverted_index.message | 80, 115 |
| abstract_inverted_index.of\nCAN | 101 |
| abstract_inverted_index.present | 65 |
| abstract_inverted_index.rate.\n | 154 |
| abstract_inverted_index.results | 126 |
| abstract_inverted_index.signals | 102 |
| abstract_inverted_index.similar | 139 |
| abstract_inverted_index.In\nthis | 62 |
| abstract_inverted_index.Multiple | 0 |
| abstract_inverted_index.Securing | 12 |
| abstract_inverted_index.accuracy | 142 |
| abstract_inverted_index.attacks, | 50 |
| abstract_inverted_index.attacks. | 124 |
| abstract_inverted_index.behavior | 100 |
| abstract_inverted_index.datasets | 120 |
| abstract_inverted_index.however, | 40 |
| abstract_inverted_index.learning | 69, 137 |
| abstract_inverted_index.messages | 35, 52 |
| abstract_inverted_index.multiple | 113 |
| abstract_inverted_index.network; | 39 |
| abstract_inverted_index.networks | 6 |
| abstract_inverted_index.patterns | 88 |
| abstract_inverted_index.positive | 153 |
| abstract_inverted_index.problem. | 61 |
| abstract_inverted_index.solution | 95 |
| abstract_inverted_index.detecting | 79 |
| abstract_inverted_index.detection | 57 |
| abstract_inverted_index.favorably | 132 |
| abstract_inverted_index.including | 121 |
| abstract_inverted_index.intrusion | 71 |
| abstract_inverted_index.malicious | 107 |
| abstract_inverted_index.modified, | 54 |
| abstract_inverted_index.necessary | 23 |
| abstract_inverted_index.networks. | 75 |
| abstract_inverted_index.scenarios | 148 |
| abstract_inverted_index.Controller | 14 |
| abstract_inverted_index.exploited. | 11 |
| abstract_inverted_index.in-vehicle | 5 |
| abstract_inverted_index.relatively | 43 |
| abstract_inverted_index.Performance | 125 |
| abstract_inverted_index.lightweight | 130 |
| abstract_inverted_index.modification | 81 |
| abstract_inverted_index.unsupervised | 136 |
| abstract_inverted_index.convolutional | 93 |
| abstract_inverted_index.differentiate | 104 |
| abstract_inverted_index.evaluated\non | 112 |
| abstract_inverted_index.network-based | 94 |
| abstract_inverted_index.sophisticated | 49 |
| abstract_inverted_index.such\nattacks | 41 |
| abstract_inverted_index.the\noriginal | 51 |
| abstract_inverted_index.manufacturers. | 27 |
| abstract_inverted_index.attacks,\nwhich | 82 |
| abstract_inverted_index.communications. | 90 |
| abstract_inverted_index.a\nsignificantly | 150 |
| abstract_inverted_index.different\ntypes | 122 |
| abstract_inverted_index.modern\nvehicles | 19 |
| abstract_inverted_index.state-of-the-art | 135 |
| abstract_inverted_index.detection\nmethod | 72 |
| abstract_inverted_index.approach\ncompares | 131 |
| abstract_inverted_index.proposed\ntemporal | 92 |
| abstract_inverted_index.inject\npotentially | 30 |
| abstract_inverted_index.approach,\nachieving | 138 |
| abstract_inverted_index.vulnerabilities\nwhich | 8 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.59686722 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |