Detecting Nuclear Materials in Urban Environments Using Mobile Sensor Networks Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/s21062196
Radiation detectors installed at major ports of entry are a key component of the overall strategy to protect countries from nuclear terrorism. While the goal of deploying these systems is to intercept special nuclear material as it enters the country, no detector system is foolproof. Mobile, distributed sensors have been proposed to detect nuclear materials in transit should portal monitors fail to prevent their entry in the first place. In large metropolitan areas, a mobile distributed sensor network could be deployed using vehicle platforms such as taxis, Ubers, and Lyfts, which are already connected to communications infrastructure. However, performance and coverage that could be achieved using a network of sensors mounted on commercial passenger vehicles has not been established. Here, we evaluate how a mobile sensor network could perform in New York City using a combination of radiation transport and geographic information systems. The geographic information system is used in conjunction with OpenStreetMap data to isolate roads and construct a grid over the streets. Vehicle paths are built using pickup and drop off data from Uber, and from the New York State Department of Transportation. The results show that the time to first detection increases with source velocity, decreases with the number of mobile detectors, and reaches a plateau that depends on the strength of the source.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s21062196
- https://www.mdpi.com/1424-8220/21/6/2196/pdf?version=1616468394
- OA Status
- gold
- Cited By
- 12
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3138318505
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3138318505Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s21062196Digital Object Identifier
- Title
-
Detecting Nuclear Materials in Urban Environments Using Mobile Sensor NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-03-21Full publication date if available
- Authors
-
R.R. Flanagan, Logan Brandt, Andrew Osborne, Mark DeinertList of authors in order
- Landing page
-
https://doi.org/10.3390/s21062196Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/21/6/2196/pdf?version=1616468394Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/21/6/2196/pdf?version=1616468394Direct OA link when available
- Concepts
-
Computer science, Detector, Global Positioning System, Taxis, Track (disk drive), Real-time computing, Telecommunications, Transport engineering, Engineering, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 4, 2023: 5, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3138318505 |
|---|---|
| doi | https://doi.org/10.3390/s21062196 |
| ids.doi | https://doi.org/10.3390/s21062196 |
| ids.mag | 3138318505 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/33801076 |
| ids.openalex | https://openalex.org/W3138318505 |
| fwci | 2.05346648 |
| type | article |
| title | Detecting Nuclear Materials in Urban Environments Using Mobile Sensor Networks |
| biblio.issue | 6 |
| biblio.volume | 21 |
| biblio.last_page | 2196 |
| biblio.first_page | 2196 |
| topics[0].id | https://openalex.org/T11819 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9825999736785889 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2713 |
| topics[0].subfield.display_name | Epidemiology |
| topics[0].display_name | Data-Driven Disease Surveillance |
| topics[1].id | https://openalex.org/T11588 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9710000157356262 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Atmospheric and Environmental Gas Dynamics |
| topics[2].id | https://openalex.org/T10689 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9501000046730042 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Remote-Sensing Image Classification |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5059999823570251 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C94915269 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4536541998386383 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[1].display_name | Detector |
| concepts[2].id | https://openalex.org/C60229501 |
| concepts[2].level | 2 |
| concepts[2].score | 0.45341524481773376 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q18822 |
| concepts[2].display_name | Global Positioning System |
| concepts[3].id | https://openalex.org/C183373512 |
| concepts[3].level | 2 |
| concepts[3].score | 0.42980819940567017 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q949618 |
| concepts[3].display_name | Taxis |
| concepts[4].id | https://openalex.org/C89992363 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4104892611503601 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5961558 |
| concepts[4].display_name | Track (disk drive) |
| concepts[5].id | https://openalex.org/C79403827 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4095037281513214 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[5].display_name | Real-time computing |
| concepts[6].id | https://openalex.org/C76155785 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3614735007286072 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[6].display_name | Telecommunications |
| concepts[7].id | https://openalex.org/C22212356 |
| concepts[7].level | 1 |
| concepts[7].score | 0.31742048263549805 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q775325 |
| concepts[7].display_name | Transport engineering |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.23580092191696167 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| concepts[9].id | https://openalex.org/C111919701 |
| concepts[9].level | 1 |
| concepts[9].score | 0.13280048966407776 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[9].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5059999823570251 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/detector |
| keywords[1].score | 0.4536541998386383 |
| keywords[1].display_name | Detector |
| keywords[2].id | https://openalex.org/keywords/global-positioning-system |
| keywords[2].score | 0.45341524481773376 |
| keywords[2].display_name | Global Positioning System |
| keywords[3].id | https://openalex.org/keywords/taxis |
| keywords[3].score | 0.42980819940567017 |
| keywords[3].display_name | Taxis |
| keywords[4].id | https://openalex.org/keywords/track |
| keywords[4].score | 0.4104892611503601 |
| keywords[4].display_name | Track (disk drive) |
| keywords[5].id | https://openalex.org/keywords/real-time-computing |
| keywords[5].score | 0.4095037281513214 |
| keywords[5].display_name | Real-time computing |
| keywords[6].id | https://openalex.org/keywords/telecommunications |
| keywords[6].score | 0.3614735007286072 |
| keywords[6].display_name | Telecommunications |
| keywords[7].id | https://openalex.org/keywords/transport-engineering |
| keywords[7].score | 0.31742048263549805 |
| keywords[7].display_name | Transport engineering |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.23580092191696167 |
| keywords[8].display_name | Engineering |
| keywords[9].id | https://openalex.org/keywords/operating-system |
| keywords[9].score | 0.13280048966407776 |
| keywords[9].display_name | Operating system |
| language | en |
| locations[0].id | doi:10.3390/s21062196 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/21/6/2196/pdf?version=1616468394 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s21062196 |
| locations[1].id | pmid:33801076 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/33801076 |
| locations[2].id | pmh:oai:edpsciences.org:dkey/10.1051/epjconf/202124716003 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400744 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Springer Link (Chiba Institute of Technology) |
| locations[2].source.host_organization | https://openalex.org/I8488066 |
| locations[2].source.host_organization_name | Chiba Institute of Technology |
| locations[2].source.host_organization_lineage | https://openalex.org/I8488066 |
| locations[2].license | |
| locations[2].pdf_url | https://www.epj-conferences.org/10.1051/epjconf/202124716003/pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | https://doi.org/10.1051/epjconf/202124716003 |
| locations[2].landing_page_url | |
| locations[3].id | pmh:oai:doaj.org/article:8990529cd6c04a6593d78761321ab773 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | cc-by-sa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors, Vol 21, Iss 6, p 2196 (2021) |
| locations[3].landing_page_url | https://doaj.org/article/8990529cd6c04a6593d78761321ab773 |
| locations[4].id | pmh:oai:mdpi.com:/1424-8220/21/6/2196/ |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400947 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | MDPI (MDPI AG) |
| locations[4].source.host_organization | https://openalex.org/I4210097602 |
| locations[4].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors; Volume 21; Issue 6; Pages: 2196 |
| locations[4].landing_page_url | https://dx.doi.org/10.3390/s21062196 |
| locations[5].id | pmh:oai:pubmedcentral.nih.gov:8004009 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S2764455111 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | PubMed Central |
| locations[5].source.host_organization | https://openalex.org/I1299303238 |
| locations[5].source.host_organization_name | National Institutes of Health |
| locations[5].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[5].license | other-oa |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | Text |
| locations[5].license_id | https://openalex.org/licenses/other-oa |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | Sensors (Basel) |
| locations[5].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8004009 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5074339265 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | R.R. Flanagan |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I167576493 |
| authorships[0].affiliations[0].raw_affiliation_string | Nuclear Science and Engineering, The Colorado School of Mines, Golden, CO 80401, USA |
| authorships[0].institutions[0].id | https://openalex.org/I167576493 |
| authorships[0].institutions[0].ror | https://ror.org/04raf6v53 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I167576493 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Colorado School of Mines |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Robert Flanagan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Nuclear Science and Engineering, The Colorado School of Mines, Golden, CO 80401, USA |
| authorships[1].author.id | https://openalex.org/A5109493182 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Logan Brandt |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I430641 |
| authorships[1].affiliations[0].raw_affiliation_string | United States Air Force Academy, Colorado Springs, Air Force Academy, CO 80840, USA |
| authorships[1].institutions[0].id | https://openalex.org/I430641 |
| authorships[1].institutions[0].ror | https://ror.org/0055d0g64 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I1330347796, https://openalex.org/I4210089612, https://openalex.org/I4210102105, https://openalex.org/I430641 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | United States Air Force Academy |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Logan Brandt |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | United States Air Force Academy, Colorado Springs, Air Force Academy, CO 80840, USA |
| authorships[2].author.id | https://openalex.org/A5066753428 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2970-5939 |
| authorships[2].author.display_name | Andrew Osborne |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I167576493 |
| authorships[2].affiliations[0].raw_affiliation_string | Nuclear Science and Engineering, The Colorado School of Mines, Golden, CO 80401, USA |
| authorships[2].institutions[0].id | https://openalex.org/I167576493 |
| authorships[2].institutions[0].ror | https://ror.org/04raf6v53 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I167576493 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Colorado School of Mines |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Andrew Osborne |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Nuclear Science and Engineering, The Colorado School of Mines, Golden, CO 80401, USA |
| authorships[3].author.id | https://openalex.org/A5026107567 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3951-5568 |
| authorships[3].author.display_name | Mark Deinert |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I167576493 |
| authorships[3].affiliations[0].raw_affiliation_string | Payne Institute for Public Policy, The Colorado School of Mines, Golden, CO 80401, USA |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I167576493 |
| authorships[3].affiliations[1].raw_affiliation_string | Nuclear Science and Engineering, The Colorado School of Mines, Golden, CO 80401, USA |
| authorships[3].institutions[0].id | https://openalex.org/I167576493 |
| authorships[3].institutions[0].ror | https://ror.org/04raf6v53 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I167576493 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Colorado School of Mines |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Mark Deinert |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Nuclear Science and Engineering, The Colorado School of Mines, Golden, CO 80401, USA, Payne Institute for Public Policy, The Colorado School of Mines, Golden, CO 80401, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/21/6/2196/pdf?version=1616468394 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detecting Nuclear Materials in Urban Environments Using Mobile Sensor Networks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11819 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9825999736785889 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2713 |
| primary_topic.subfield.display_name | Epidemiology |
| primary_topic.display_name | Data-Driven Disease Surveillance |
| related_works | https://openalex.org/W2731640799, https://openalex.org/W3145095895, https://openalex.org/W2594548639, https://openalex.org/W4387544810, https://openalex.org/W2978498151, https://openalex.org/W2782837293, https://openalex.org/W1946755446, https://openalex.org/W2388377527, https://openalex.org/W565532978, https://openalex.org/W2114323843 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 6 |
| best_oa_location.id | doi:10.3390/s21062196 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/21/6/2196/pdf?version=1616468394 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s21062196 |
| primary_location.id | doi:10.3390/s21062196 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/21/6/2196/pdf?version=1616468394 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s21062196 |
| publication_date | 2021-03-21 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3186179867, https://openalex.org/W1974365687, https://openalex.org/W2085741027, https://openalex.org/W6669350951, https://openalex.org/W2158911426, https://openalex.org/W2096955053, https://openalex.org/W1762262881, https://openalex.org/W2002293385, https://openalex.org/W2766025411, https://openalex.org/W1989769652, https://openalex.org/W2171254256, https://openalex.org/W1989750313, https://openalex.org/W6630235736, https://openalex.org/W2797525809, https://openalex.org/W1988850847, https://openalex.org/W2103770687, https://openalex.org/W2521740637, https://openalex.org/W2944433628, https://openalex.org/W2890398022, https://openalex.org/W2588185394, https://openalex.org/W2339733357, https://openalex.org/W2948574104, https://openalex.org/W2074891275 |
| referenced_works_count | 23 |
| abstract_inverted_index.a | 9, 73, 106, 123, 134, 159, 207 |
| abstract_inverted_index.In | 69 |
| abstract_inverted_index.as | 35, 85 |
| abstract_inverted_index.at | 3 |
| abstract_inverted_index.be | 79, 103 |
| abstract_inverted_index.in | 55, 65, 129, 149 |
| abstract_inverted_index.is | 29, 43, 147 |
| abstract_inverted_index.it | 36 |
| abstract_inverted_index.no | 40 |
| abstract_inverted_index.of | 6, 12, 25, 108, 136, 183, 202, 214 |
| abstract_inverted_index.on | 111, 211 |
| abstract_inverted_index.to | 16, 30, 51, 61, 94, 154, 191 |
| abstract_inverted_index.we | 120 |
| abstract_inverted_index.New | 130, 179 |
| abstract_inverted_index.The | 143, 185 |
| abstract_inverted_index.and | 88, 99, 139, 157, 170, 176, 205 |
| abstract_inverted_index.are | 8, 91, 166 |
| abstract_inverted_index.has | 115 |
| abstract_inverted_index.how | 122 |
| abstract_inverted_index.key | 10 |
| abstract_inverted_index.not | 116 |
| abstract_inverted_index.off | 172 |
| abstract_inverted_index.the | 13, 23, 38, 66, 162, 178, 189, 200, 212, 215 |
| abstract_inverted_index.City | 132 |
| abstract_inverted_index.York | 131, 180 |
| abstract_inverted_index.been | 49, 117 |
| abstract_inverted_index.data | 153, 173 |
| abstract_inverted_index.drop | 171 |
| abstract_inverted_index.fail | 60 |
| abstract_inverted_index.from | 19, 174, 177 |
| abstract_inverted_index.goal | 24 |
| abstract_inverted_index.grid | 160 |
| abstract_inverted_index.have | 48 |
| abstract_inverted_index.over | 161 |
| abstract_inverted_index.show | 187 |
| abstract_inverted_index.such | 84 |
| abstract_inverted_index.that | 101, 188, 209 |
| abstract_inverted_index.time | 190 |
| abstract_inverted_index.used | 148 |
| abstract_inverted_index.with | 151, 195, 199 |
| abstract_inverted_index.Here, | 119 |
| abstract_inverted_index.State | 181 |
| abstract_inverted_index.Uber, | 175 |
| abstract_inverted_index.While | 22 |
| abstract_inverted_index.built | 167 |
| abstract_inverted_index.could | 78, 102, 127 |
| abstract_inverted_index.entry | 7, 64 |
| abstract_inverted_index.first | 67, 192 |
| abstract_inverted_index.large | 70 |
| abstract_inverted_index.major | 4 |
| abstract_inverted_index.paths | 165 |
| abstract_inverted_index.ports | 5 |
| abstract_inverted_index.roads | 156 |
| abstract_inverted_index.their | 63 |
| abstract_inverted_index.these | 27 |
| abstract_inverted_index.using | 81, 105, 133, 168 |
| abstract_inverted_index.which | 90 |
| abstract_inverted_index.Lyfts, | 89 |
| abstract_inverted_index.Ubers, | 87 |
| abstract_inverted_index.areas, | 72 |
| abstract_inverted_index.detect | 52 |
| abstract_inverted_index.enters | 37 |
| abstract_inverted_index.mobile | 74, 124, 203 |
| abstract_inverted_index.number | 201 |
| abstract_inverted_index.pickup | 169 |
| abstract_inverted_index.place. | 68 |
| abstract_inverted_index.portal | 58 |
| abstract_inverted_index.sensor | 76, 125 |
| abstract_inverted_index.should | 57 |
| abstract_inverted_index.source | 196 |
| abstract_inverted_index.system | 42, 146 |
| abstract_inverted_index.taxis, | 86 |
| abstract_inverted_index.Mobile, | 45 |
| abstract_inverted_index.Vehicle | 164 |
| abstract_inverted_index.already | 92 |
| abstract_inverted_index.depends | 210 |
| abstract_inverted_index.isolate | 155 |
| abstract_inverted_index.mounted | 110 |
| abstract_inverted_index.network | 77, 107, 126 |
| abstract_inverted_index.nuclear | 20, 33, 53 |
| abstract_inverted_index.overall | 14 |
| abstract_inverted_index.perform | 128 |
| abstract_inverted_index.plateau | 208 |
| abstract_inverted_index.prevent | 62 |
| abstract_inverted_index.protect | 17 |
| abstract_inverted_index.reaches | 206 |
| abstract_inverted_index.results | 186 |
| abstract_inverted_index.sensors | 47, 109 |
| abstract_inverted_index.source. | 216 |
| abstract_inverted_index.special | 32 |
| abstract_inverted_index.systems | 28 |
| abstract_inverted_index.transit | 56 |
| abstract_inverted_index.vehicle | 82 |
| abstract_inverted_index.However, | 97 |
| abstract_inverted_index.achieved | 104 |
| abstract_inverted_index.country, | 39 |
| abstract_inverted_index.coverage | 100 |
| abstract_inverted_index.deployed | 80 |
| abstract_inverted_index.detector | 41 |
| abstract_inverted_index.evaluate | 121 |
| abstract_inverted_index.material | 34 |
| abstract_inverted_index.monitors | 59 |
| abstract_inverted_index.proposed | 50 |
| abstract_inverted_index.strategy | 15 |
| abstract_inverted_index.streets. | 163 |
| abstract_inverted_index.strength | 213 |
| abstract_inverted_index.systems. | 142 |
| abstract_inverted_index.vehicles | 114 |
| abstract_inverted_index.Radiation | 0 |
| abstract_inverted_index.component | 11 |
| abstract_inverted_index.connected | 93 |
| abstract_inverted_index.construct | 158 |
| abstract_inverted_index.countries | 18 |
| abstract_inverted_index.decreases | 198 |
| abstract_inverted_index.deploying | 26 |
| abstract_inverted_index.detection | 193 |
| abstract_inverted_index.detectors | 1 |
| abstract_inverted_index.increases | 194 |
| abstract_inverted_index.installed | 2 |
| abstract_inverted_index.intercept | 31 |
| abstract_inverted_index.materials | 54 |
| abstract_inverted_index.passenger | 113 |
| abstract_inverted_index.platforms | 83 |
| abstract_inverted_index.radiation | 137 |
| abstract_inverted_index.transport | 138 |
| abstract_inverted_index.velocity, | 197 |
| abstract_inverted_index.Department | 182 |
| abstract_inverted_index.commercial | 112 |
| abstract_inverted_index.detectors, | 204 |
| abstract_inverted_index.foolproof. | 44 |
| abstract_inverted_index.geographic | 140, 144 |
| abstract_inverted_index.terrorism. | 21 |
| abstract_inverted_index.combination | 135 |
| abstract_inverted_index.conjunction | 150 |
| abstract_inverted_index.distributed | 46, 75 |
| abstract_inverted_index.information | 141, 145 |
| abstract_inverted_index.performance | 98 |
| abstract_inverted_index.established. | 118 |
| abstract_inverted_index.metropolitan | 71 |
| abstract_inverted_index.OpenStreetMap | 152 |
| abstract_inverted_index.communications | 95 |
| abstract_inverted_index.Transportation. | 184 |
| abstract_inverted_index.infrastructure. | 96 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5026107567, https://openalex.org/A5066753428 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I167576493 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.5799999833106995 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.83963531 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |