Detecting Pests From Light-Trapping Images Based on Improved YOLOv3 Model and Instance Augmentation Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3389/fpls.2022.939498
Light traps have been widely used as effective tools to monitor multiple agricultural and forest insect pests simultaneously. However, the current detection methods of pests from light trapping images have several limitations, such as exhibiting extremely imbalanced class distribution, occlusion among multiple pest targets, and inter-species similarity. To address the problems, this study proposes an improved YOLOv3 model in combination with image enhancement to better detect crop pests in real agricultural environments. First, a dataset containing nine common maize pests is constructed after an image augmentation based on image cropping. Then, a linear transformation method is proposed to optimize the anchors generated by the k-means clustering algorithm, which can improve the matching accuracy between anchors and ground truths. In addition, two residual units are added to the second residual block of the original YOLOv3 network to obtain more information about the location of the underlying small targets, and one ResNet unit is used in the feature pyramid network structure to replace two DBL(Conv+BN+LeakyReLU) structures to enhance the reuse of pest features. Experiment results show that the mAP and mRecall of our proposed method are improved by 6.3% and 4.61%, respectively, compared with the original YOLOv3. The proposed method outperforms other state-of-the-art methods (SSD, Faster-rcnn, and YOLOv4), indicating that the proposed method achieves the best detection performance, which can provide an effective model for the realization of intelligent monitoring of maize pests.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fpls.2022.939498
- https://www.frontiersin.org/articles/10.3389/fpls.2022.939498/pdf
- OA Status
- gold
- Cited By
- 14
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4284713930
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4284713930Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fpls.2022.939498Digital Object Identifier
- Title
-
Detecting Pests From Light-Trapping Images Based on Improved YOLOv3 Model and Instance AugmentationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-07-07Full publication date if available
- Authors
-
Jia‐Wei Lv, Wenyong Li, Mingyuan Fan, Tengfei Zheng, Zhankui Yang, Yaocong Chen, Guohuang He, Xinting Yang, Shuangyin Liu, Chuanheng SunList of authors in order
- Landing page
-
https://doi.org/10.3389/fpls.2022.939498Publisher landing page
- PDF URL
-
https://www.frontiersin.org/articles/10.3389/fpls.2022.939498/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/articles/10.3389/fpls.2022.939498/pdfDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, Transformation (genetics), Residual, Pattern recognition (psychology), Pyramid (geometry), Feature (linguistics), Image (mathematics), Block (permutation group theory), Mathematics, Algorithm, Gene, Linguistics, Chemistry, Biochemistry, Geometry, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 4, 2023: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4284713930 |
|---|---|
| doi | https://doi.org/10.3389/fpls.2022.939498 |
| ids.doi | https://doi.org/10.3389/fpls.2022.939498 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35873992 |
| ids.openalex | https://openalex.org/W4284713930 |
| fwci | 2.48781883 |
| type | article |
| title | Detecting Pests From Light-Trapping Images Based on Improved YOLOv3 Model and Instance Augmentation |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 939498 |
| biblio.first_page | 939498 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T12894 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.993399977684021 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Date Palm Research Studies |
| topics[2].id | https://openalex.org/T10166 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9921000003814697 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2739 |
| topics[2].subfield.display_name | Public Health, Environmental and Occupational Health |
| topics[2].display_name | Mosquito-borne diseases and control |
| funders[0].id | https://openalex.org/F4320324784 |
| funders[0].ror | https://ror.org/04trzn023 |
| funders[0].display_name | Beijing Academy of Agricultural and Forestry Sciences |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7430239915847778 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6433557271957397 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C204241405 |
| concepts[2].level | 3 |
| concepts[2].score | 0.564041256904602 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q461499 |
| concepts[2].display_name | Transformation (genetics) |
| concepts[3].id | https://openalex.org/C155512373 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5380311608314514 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[3].display_name | Residual |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4984450340270996 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C142575187 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47595784068107605 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3358290 |
| concepts[5].display_name | Pyramid (geometry) |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46454620361328125 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C115961682 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4253700375556946 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[7].display_name | Image (mathematics) |
| concepts[8].id | https://openalex.org/C2777210771 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4232880771160126 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4927124 |
| concepts[8].display_name | Block (permutation group theory) |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.15166622400283813 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.12044265866279602 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C104317684 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[11].display_name | Gene |
| concepts[12].id | https://openalex.org/C41895202 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[12].display_name | Linguistics |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C55493867 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[14].display_name | Biochemistry |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7430239915847778 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6433557271957397 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/transformation |
| keywords[2].score | 0.564041256904602 |
| keywords[2].display_name | Transformation (genetics) |
| keywords[3].id | https://openalex.org/keywords/residual |
| keywords[3].score | 0.5380311608314514 |
| keywords[3].display_name | Residual |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.4984450340270996 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/pyramid |
| keywords[5].score | 0.47595784068107605 |
| keywords[5].display_name | Pyramid (geometry) |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.46454620361328125 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/image |
| keywords[7].score | 0.4253700375556946 |
| keywords[7].display_name | Image (mathematics) |
| keywords[8].id | https://openalex.org/keywords/block |
| keywords[8].score | 0.4232880771160126 |
| keywords[8].display_name | Block (permutation group theory) |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.15166622400283813 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.12044265866279602 |
| keywords[10].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.3389/fpls.2022.939498 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2493613807 |
| locations[0].source.issn | 1664-462X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1664-462X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Plant Science |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/articles/10.3389/fpls.2022.939498/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Plant Science |
| locations[0].landing_page_url | https://doi.org/10.3389/fpls.2022.939498 |
| locations[1].id | pmid:35873992 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in plant science |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35873992 |
| locations[2].id | pmh:oai:doaj.org/article:35d34a486efc40e4a362e51113c1968c |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Frontiers in Plant Science, Vol 13 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/35d34a486efc40e4a362e51113c1968c |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:9301456 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Front Plant Sci |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9301456 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5101962049 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9278-0929 |
| authorships[0].author.display_name | Jia‐Wei Lv |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210156423 |
| authorships[0].affiliations[0].raw_affiliation_string | National Engineering Laboratory for Agri-product Quality Traceability, Beijing, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I94357780 |
| authorships[0].affiliations[1].raw_affiliation_string | College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I4210156423 |
| authorships[0].affiliations[2].raw_affiliation_string | National Engineering Research Center for Information Technology in Agriculture, Beijing, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210156423 |
| authorships[0].institutions[0].ror | https://ror.org/04c3j3t84 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210156423 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | National Engineering Research Center for Information Technology in Agriculture |
| authorships[0].institutions[1].id | https://openalex.org/I94357780 |
| authorships[0].institutions[1].ror | https://ror.org/000b7ms85 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I94357780 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Zhongkai University of Agriculture and Engineering |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiawei Lv |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China, National Engineering Laboratory for Agri-product Quality Traceability, Beijing, China, National Engineering Research Center for Information Technology in Agriculture, Beijing, China |
| authorships[1].author.id | https://openalex.org/A5101607282 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0029-8313 |
| authorships[1].author.display_name | Wenyong Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210156423 |
| authorships[1].affiliations[0].raw_affiliation_string | National Engineering Laboratory for Agri-product Quality Traceability, Beijing, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210156423 |
| authorships[1].affiliations[1].raw_affiliation_string | National Engineering Research Center for Information Technology in Agriculture, Beijing, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210156423 |
| authorships[1].institutions[0].ror | https://ror.org/04c3j3t84 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210156423 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | National Engineering Research Center for Information Technology in Agriculture |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wenyong Li |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | National Engineering Laboratory for Agri-product Quality Traceability, Beijing, China, National Engineering Research Center for Information Technology in Agriculture, Beijing, China |
| authorships[2].author.id | https://openalex.org/A5104198236 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Mingyuan Fan |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I94357780 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China |
| authorships[2].institutions[0].id | https://openalex.org/I94357780 |
| authorships[2].institutions[0].ror | https://ror.org/000b7ms85 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I94357780 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Zhongkai University of Agriculture and Engineering |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mingyuan Fan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China |
| authorships[3].author.id | https://openalex.org/A5085854109 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Tengfei Zheng |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210156423 |
| authorships[3].affiliations[0].raw_affiliation_string | National Engineering Research Center for Information Technology in Agriculture, Beijing, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210156423 |
| authorships[3].institutions[0].ror | https://ror.org/04c3j3t84 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210156423 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | National Engineering Research Center for Information Technology in Agriculture |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tengfei Zheng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | National Engineering Research Center for Information Technology in Agriculture, Beijing, China |
| authorships[4].author.id | https://openalex.org/A5082241818 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Zhankui Yang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210156423 |
| authorships[4].affiliations[0].raw_affiliation_string | National Engineering Research Center for Information Technology in Agriculture, Beijing, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210156423 |
| authorships[4].institutions[0].ror | https://ror.org/04c3j3t84 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210156423 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | National Engineering Research Center for Information Technology in Agriculture |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhankui Yang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | National Engineering Research Center for Information Technology in Agriculture, Beijing, China |
| authorships[5].author.id | https://openalex.org/A5043423778 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Yaocong Chen |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I94357780 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China |
| authorships[5].institutions[0].id | https://openalex.org/I94357780 |
| authorships[5].institutions[0].ror | https://ror.org/000b7ms85 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I94357780 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Zhongkai University of Agriculture and Engineering |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yaocong Chen |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China |
| authorships[6].author.id | https://openalex.org/A5008652639 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Guohuang He |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I94357780 |
| authorships[6].affiliations[0].raw_affiliation_string | College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China |
| authorships[6].institutions[0].id | https://openalex.org/I94357780 |
| authorships[6].institutions[0].ror | https://ror.org/000b7ms85 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I94357780 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Zhongkai University of Agriculture and Engineering |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Guohuang He |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China |
| authorships[7].author.id | https://openalex.org/A5019280085 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-9042-1815 |
| authorships[7].author.display_name | Xinting Yang |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210156423 |
| authorships[7].affiliations[0].raw_affiliation_string | National Engineering Research Center for Information Technology in Agriculture, Beijing, China |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I4210156423 |
| authorships[7].affiliations[1].raw_affiliation_string | National Engineering Laboratory for Agri-product Quality Traceability, Beijing, China |
| authorships[7].institutions[0].id | https://openalex.org/I4210156423 |
| authorships[7].institutions[0].ror | https://ror.org/04c3j3t84 |
| authorships[7].institutions[0].type | facility |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210156423 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | National Engineering Research Center for Information Technology in Agriculture |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Xinting Yang |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | National Engineering Laboratory for Agri-product Quality Traceability, Beijing, China, National Engineering Research Center for Information Technology in Agriculture, Beijing, China |
| authorships[8].author.id | https://openalex.org/A5051181135 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-4068-1096 |
| authorships[8].author.display_name | Shuangyin Liu |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I94357780 |
| authorships[8].affiliations[0].raw_affiliation_string | College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China |
| authorships[8].institutions[0].id | https://openalex.org/I94357780 |
| authorships[8].institutions[0].ror | https://ror.org/000b7ms85 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I94357780 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Zhongkai University of Agriculture and Engineering |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Shuangyin Liu |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China |
| authorships[9].author.id | https://openalex.org/A5047311306 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-7813-6130 |
| authorships[9].author.display_name | Chuanheng Sun |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I4210156423 |
| authorships[9].affiliations[0].raw_affiliation_string | National Engineering Research Center for Information Technology in Agriculture, Beijing, China |
| authorships[9].affiliations[1].institution_ids | https://openalex.org/I4210156423 |
| authorships[9].affiliations[1].raw_affiliation_string | National Engineering Laboratory for Agri-product Quality Traceability, Beijing, China |
| authorships[9].institutions[0].id | https://openalex.org/I4210156423 |
| authorships[9].institutions[0].ror | https://ror.org/04c3j3t84 |
| authorships[9].institutions[0].type | facility |
| authorships[9].institutions[0].lineage | https://openalex.org/I4210156423 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | National Engineering Research Center for Information Technology in Agriculture |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Chuanheng Sun |
| authorships[9].is_corresponding | True |
| authorships[9].raw_affiliation_strings | National Engineering Laboratory for Agri-product Quality Traceability, Beijing, China, National Engineering Research Center for Information Technology in Agriculture, Beijing, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/articles/10.3389/fpls.2022.939498/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detecting Pests From Light-Trapping Images Based on Improved YOLOv3 Model and Instance Augmentation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W2560215812, https://openalex.org/W2949601986, https://openalex.org/W2788972299, https://openalex.org/W2972212393, https://openalex.org/W4206776094, https://openalex.org/W3150439626, https://openalex.org/W3154920669, https://openalex.org/W3121197456, https://openalex.org/W2060887160, https://openalex.org/W2368367751 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/fpls.2022.939498 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2493613807 |
| best_oa_location.source.issn | 1664-462X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1664-462X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Plant Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fpls.2022.939498/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Plant Science |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fpls.2022.939498 |
| primary_location.id | doi:10.3389/fpls.2022.939498 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2493613807 |
| primary_location.source.issn | 1664-462X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1664-462X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Plant Science |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fpls.2022.939498/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Plant Science |
| primary_location.landing_page_url | https://doi.org/10.3389/fpls.2022.939498 |
| publication_date | 2022-07-07 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3018105153, https://openalex.org/W6777046832, https://openalex.org/W3021118143, https://openalex.org/W2964693382, https://openalex.org/W2285671993, https://openalex.org/W189270827, https://openalex.org/W2943381834, https://openalex.org/W3032016692, https://openalex.org/W2896726780, https://openalex.org/W3035016091, https://openalex.org/W2938719104, https://openalex.org/W6785652829, https://openalex.org/W3139015554, https://openalex.org/W6739742408, https://openalex.org/W3159029780, https://openalex.org/W6750227808, https://openalex.org/W6620707391, https://openalex.org/W2018105531, https://openalex.org/W3033723206, https://openalex.org/W2991844793, https://openalex.org/W3042482584, https://openalex.org/W3186166339, https://openalex.org/W4238084609, https://openalex.org/W3014526135, https://openalex.org/W2595840341 |
| referenced_works_count | 25 |
| abstract_inverted_index.a | 73, 91 |
| abstract_inverted_index.In | 118 |
| abstract_inverted_index.To | 47 |
| abstract_inverted_index.an | 54, 83, 219 |
| abstract_inverted_index.as | 6, 33 |
| abstract_inverted_index.by | 102, 185 |
| abstract_inverted_index.in | 58, 68, 153 |
| abstract_inverted_index.is | 80, 95, 151 |
| abstract_inverted_index.of | 23, 130, 142, 168, 179, 225, 228 |
| abstract_inverted_index.on | 87 |
| abstract_inverted_index.to | 9, 63, 97, 125, 135, 159, 164 |
| abstract_inverted_index.The | 195 |
| abstract_inverted_index.and | 13, 44, 115, 147, 177, 187, 204 |
| abstract_inverted_index.are | 123, 183 |
| abstract_inverted_index.can | 108, 217 |
| abstract_inverted_index.for | 222 |
| abstract_inverted_index.mAP | 176 |
| abstract_inverted_index.one | 148 |
| abstract_inverted_index.our | 180 |
| abstract_inverted_index.the | 19, 49, 99, 103, 110, 126, 131, 140, 143, 154, 166, 175, 192, 208, 212, 223 |
| abstract_inverted_index.two | 120, 161 |
| abstract_inverted_index.6.3% | 186 |
| abstract_inverted_index.been | 3 |
| abstract_inverted_index.best | 213 |
| abstract_inverted_index.crop | 66 |
| abstract_inverted_index.from | 25 |
| abstract_inverted_index.have | 2, 29 |
| abstract_inverted_index.more | 137 |
| abstract_inverted_index.nine | 76 |
| abstract_inverted_index.pest | 42, 169 |
| abstract_inverted_index.real | 69 |
| abstract_inverted_index.show | 173 |
| abstract_inverted_index.such | 32 |
| abstract_inverted_index.that | 174, 207 |
| abstract_inverted_index.this | 51 |
| abstract_inverted_index.unit | 150 |
| abstract_inverted_index.used | 5, 152 |
| abstract_inverted_index.with | 60, 191 |
| abstract_inverted_index.(SSD, | 202 |
| abstract_inverted_index.Light | 0 |
| abstract_inverted_index.Then, | 90 |
| abstract_inverted_index.about | 139 |
| abstract_inverted_index.added | 124 |
| abstract_inverted_index.after | 82 |
| abstract_inverted_index.among | 40 |
| abstract_inverted_index.based | 86 |
| abstract_inverted_index.block | 129 |
| abstract_inverted_index.class | 37 |
| abstract_inverted_index.image | 61, 84, 88 |
| abstract_inverted_index.light | 26 |
| abstract_inverted_index.maize | 78, 229 |
| abstract_inverted_index.model | 57, 221 |
| abstract_inverted_index.other | 199 |
| abstract_inverted_index.pests | 16, 24, 67, 79 |
| abstract_inverted_index.reuse | 167 |
| abstract_inverted_index.small | 145 |
| abstract_inverted_index.study | 52 |
| abstract_inverted_index.tools | 8 |
| abstract_inverted_index.traps | 1 |
| abstract_inverted_index.units | 122 |
| abstract_inverted_index.which | 107, 216 |
| abstract_inverted_index.4.61%, | 188 |
| abstract_inverted_index.First, | 72 |
| abstract_inverted_index.ResNet | 149 |
| abstract_inverted_index.YOLOv3 | 56, 133 |
| abstract_inverted_index.better | 64 |
| abstract_inverted_index.common | 77 |
| abstract_inverted_index.detect | 65 |
| abstract_inverted_index.forest | 14 |
| abstract_inverted_index.ground | 116 |
| abstract_inverted_index.images | 28 |
| abstract_inverted_index.insect | 15 |
| abstract_inverted_index.linear | 92 |
| abstract_inverted_index.method | 94, 182, 197, 210 |
| abstract_inverted_index.obtain | 136 |
| abstract_inverted_index.pests. | 230 |
| abstract_inverted_index.second | 127 |
| abstract_inverted_index.widely | 4 |
| abstract_inverted_index.YOLOv3. | 194 |
| abstract_inverted_index.address | 48 |
| abstract_inverted_index.anchors | 100, 114 |
| abstract_inverted_index.between | 113 |
| abstract_inverted_index.current | 20 |
| abstract_inverted_index.dataset | 74 |
| abstract_inverted_index.enhance | 165 |
| abstract_inverted_index.feature | 155 |
| abstract_inverted_index.improve | 109 |
| abstract_inverted_index.k-means | 104 |
| abstract_inverted_index.mRecall | 178 |
| abstract_inverted_index.methods | 22, 201 |
| abstract_inverted_index.monitor | 10 |
| abstract_inverted_index.network | 134, 157 |
| abstract_inverted_index.provide | 218 |
| abstract_inverted_index.pyramid | 156 |
| abstract_inverted_index.replace | 160 |
| abstract_inverted_index.results | 172 |
| abstract_inverted_index.several | 30 |
| abstract_inverted_index.truths. | 117 |
| abstract_inverted_index.However, | 18 |
| abstract_inverted_index.YOLOv4), | 205 |
| abstract_inverted_index.accuracy | 112 |
| abstract_inverted_index.achieves | 211 |
| abstract_inverted_index.compared | 190 |
| abstract_inverted_index.improved | 55, 184 |
| abstract_inverted_index.location | 141 |
| abstract_inverted_index.matching | 111 |
| abstract_inverted_index.multiple | 11, 41 |
| abstract_inverted_index.optimize | 98 |
| abstract_inverted_index.original | 132, 193 |
| abstract_inverted_index.proposed | 96, 181, 196, 209 |
| abstract_inverted_index.proposes | 53 |
| abstract_inverted_index.residual | 121, 128 |
| abstract_inverted_index.targets, | 43, 146 |
| abstract_inverted_index.trapping | 27 |
| abstract_inverted_index.addition, | 119 |
| abstract_inverted_index.cropping. | 89 |
| abstract_inverted_index.detection | 21, 214 |
| abstract_inverted_index.effective | 7, 220 |
| abstract_inverted_index.extremely | 35 |
| abstract_inverted_index.features. | 170 |
| abstract_inverted_index.generated | 101 |
| abstract_inverted_index.occlusion | 39 |
| abstract_inverted_index.problems, | 50 |
| abstract_inverted_index.structure | 158 |
| abstract_inverted_index.Experiment | 171 |
| abstract_inverted_index.algorithm, | 106 |
| abstract_inverted_index.clustering | 105 |
| abstract_inverted_index.containing | 75 |
| abstract_inverted_index.exhibiting | 34 |
| abstract_inverted_index.imbalanced | 36 |
| abstract_inverted_index.indicating | 206 |
| abstract_inverted_index.monitoring | 227 |
| abstract_inverted_index.structures | 163 |
| abstract_inverted_index.underlying | 144 |
| abstract_inverted_index.combination | 59 |
| abstract_inverted_index.constructed | 81 |
| abstract_inverted_index.enhancement | 62 |
| abstract_inverted_index.information | 138 |
| abstract_inverted_index.intelligent | 226 |
| abstract_inverted_index.outperforms | 198 |
| abstract_inverted_index.realization | 224 |
| abstract_inverted_index.similarity. | 46 |
| abstract_inverted_index.Faster-rcnn, | 203 |
| abstract_inverted_index.agricultural | 12, 70 |
| abstract_inverted_index.augmentation | 85 |
| abstract_inverted_index.limitations, | 31 |
| abstract_inverted_index.performance, | 215 |
| abstract_inverted_index.distribution, | 38 |
| abstract_inverted_index.environments. | 71 |
| abstract_inverted_index.inter-species | 45 |
| abstract_inverted_index.respectively, | 189 |
| abstract_inverted_index.transformation | 93 |
| abstract_inverted_index.simultaneously. | 17 |
| abstract_inverted_index.state-of-the-art | 200 |
| abstract_inverted_index.DBL(Conv+BN+LeakyReLU) | 162 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5047311306, https://openalex.org/A5101607282 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 10 |
| corresponding_institution_ids | https://openalex.org/I4210156423 |
| citation_normalized_percentile.value | 0.90781329 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |