Detecting QT prolongation From a Single-lead ECG With Deep Learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2401.05378
For a number of antiarrhythmics, drug loading requires a 3 day hospitalization with monitoring for QT prolongation. Automated QT monitoring with wearable ECG monitors would facilitate out-of-hospital care. We develop a deep learning model that infers QT intervals from ECG lead-I - the lead most often acquired from ambulatory ECG monitors - and to use this model to detect clinically meaningful QT-prolongation episodes during Dofetilide drug loading. Using 4.22 million 12-lead ECG recordings from 903.6 thousand patients at the Massachusetts General Hospital, we develop a deep learning model, QTNet, that infers QT intervals from lead-I. Over 3 million ECGs from 653 thousand patients are used to train the model and an internal-test set containing 633 thousand ECGs from 135 thousand patients was used for testing. QTNet is further evaluated on an external-validation set containing 3.1 million ECGs from 667 thousand patients at another institution. QTNet was used to detect Dofetilide-induced QT prolongation in a publicly available database (ECGRDVQ-dataset) containing ECGs from subjects enrolled in a clinical trial evaluating the effects of antiarrhythmic drugs. QTNet achieves mean absolute errors of 12.63ms (internal-test) and 12.30ms (external-validation) for estimating absolute QT intervals. The associated Pearson correlation coefficients are 0.91 (internal-test) and 0.92 (external-validation). For the ECGRDVQ-dataset, QTNet detects Dofetilide-induced QTc prolongation with 87% sensitivity and 77% specificity. The negative predictive value of the model is greater than 95% when the pre-test probability of drug-induced QTc prolongation is below 25%. Drug-induced QT prolongation risk can be tracked from ECG lead-I using deep learning.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2401.05378
- https://arxiv.org/pdf/2401.05378
- OA Status
- green
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390832778
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390832778Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2401.05378Digital Object Identifier
- Title
-
Detecting QT prolongation From a Single-lead ECG With Deep LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-17Full publication date if available
- Authors
-
Ridwan Alam, Aaron D. Aguirre, Collin M. StultzList of authors in order
- Landing page
-
https://arxiv.org/abs/2401.05378Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2401.05378Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2401.05378Direct OA link when available
- Concepts
-
QT interval, Dofetilide, Medicine, Prolongation, Internal medicine, Ambulatory ECG, Lead (geology), Torsades de pointes, Electrocardiography, Cardiology, Geology, GeomorphologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390832778 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2401.05378 |
| ids.doi | https://doi.org/10.48550/arxiv.2401.05378 |
| ids.openalex | https://openalex.org/W4390832778 |
| fwci | 0.0 |
| type | preprint |
| title | Detecting QT prolongation From a Single-lead ECG With Deep Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11021 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9898999929428101 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | ECG Monitoring and Analysis |
| topics[1].id | https://openalex.org/T10217 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9855999946594238 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2705 |
| topics[1].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[1].display_name | Cardiac electrophysiology and arrhythmias |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C118441451 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7415820956230164 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12074763 |
| concepts[0].display_name | QT interval |
| concepts[1].id | https://openalex.org/C2777796741 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7403126358985901 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3712521 |
| concepts[1].display_name | Dofetilide |
| concepts[2].id | https://openalex.org/C71924100 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6910055875778198 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[2].display_name | Medicine |
| concepts[3].id | https://openalex.org/C2777672339 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5691649913787842 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7249641 |
| concepts[3].display_name | Prolongation |
| concepts[4].id | https://openalex.org/C126322002 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4927380383014679 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[4].display_name | Internal medicine |
| concepts[5].id | https://openalex.org/C2909021529 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4175606966018677 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11490631 |
| concepts[5].display_name | Ambulatory ECG |
| concepts[6].id | https://openalex.org/C2777093003 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4113020598888397 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6508345 |
| concepts[6].display_name | Lead (geology) |
| concepts[7].id | https://openalex.org/C2780486423 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4110201597213745 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1625433 |
| concepts[7].display_name | Torsades de pointes |
| concepts[8].id | https://openalex.org/C2780040984 |
| concepts[8].level | 2 |
| concepts[8].score | 0.38532543182373047 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q79785 |
| concepts[8].display_name | Electrocardiography |
| concepts[9].id | https://openalex.org/C164705383 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3581607937812805 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[9].display_name | Cardiology |
| concepts[10].id | https://openalex.org/C127313418 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[10].display_name | Geology |
| concepts[11].id | https://openalex.org/C114793014 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q52109 |
| concepts[11].display_name | Geomorphology |
| keywords[0].id | https://openalex.org/keywords/qt-interval |
| keywords[0].score | 0.7415820956230164 |
| keywords[0].display_name | QT interval |
| keywords[1].id | https://openalex.org/keywords/dofetilide |
| keywords[1].score | 0.7403126358985901 |
| keywords[1].display_name | Dofetilide |
| keywords[2].id | https://openalex.org/keywords/medicine |
| keywords[2].score | 0.6910055875778198 |
| keywords[2].display_name | Medicine |
| keywords[3].id | https://openalex.org/keywords/prolongation |
| keywords[3].score | 0.5691649913787842 |
| keywords[3].display_name | Prolongation |
| keywords[4].id | https://openalex.org/keywords/internal-medicine |
| keywords[4].score | 0.4927380383014679 |
| keywords[4].display_name | Internal medicine |
| keywords[5].id | https://openalex.org/keywords/ambulatory-ecg |
| keywords[5].score | 0.4175606966018677 |
| keywords[5].display_name | Ambulatory ECG |
| keywords[6].id | https://openalex.org/keywords/lead |
| keywords[6].score | 0.4113020598888397 |
| keywords[6].display_name | Lead (geology) |
| keywords[7].id | https://openalex.org/keywords/torsades-de-pointes |
| keywords[7].score | 0.4110201597213745 |
| keywords[7].display_name | Torsades de pointes |
| keywords[8].id | https://openalex.org/keywords/electrocardiography |
| keywords[8].score | 0.38532543182373047 |
| keywords[8].display_name | Electrocardiography |
| keywords[9].id | https://openalex.org/keywords/cardiology |
| keywords[9].score | 0.3581607937812805 |
| keywords[9].display_name | Cardiology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2401.05378 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2401.05378 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2401.05378 |
| locations[1].id | doi:10.48550/arxiv.2401.05378 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2401.05378 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5034393434 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4332-4051 |
| authorships[0].author.display_name | Ridwan Alam |
| authorships[0].countries | US |
| authorships[0].affiliations[0].raw_affiliation_string | Computer Science & Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210110987 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I4210112840 |
| authorships[0].affiliations[2].raw_affiliation_string | Research Laboratory of Electronics, MIT, Cambridge, MA, USA |
| authorships[0].affiliations[3].institution_ids | https://openalex.org/I4210087915 |
| authorships[0].affiliations[3].raw_affiliation_string | Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I4210112840 |
| authorships[0].institutions[0].ror | https://ror.org/01cxdpf04 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210112840 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Cambridge Electronics (United States) |
| authorships[0].institutions[1].id | https://openalex.org/I4210110987 |
| authorships[0].institutions[1].ror | https://ror.org/01wp8zh54 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I30771326, https://openalex.org/I4210110987 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | IIT@MIT |
| authorships[0].institutions[2].id | https://openalex.org/I4210087915 |
| authorships[0].institutions[2].ror | https://ror.org/002pd6e78 |
| authorships[0].institutions[2].type | healthcare |
| authorships[0].institutions[2].lineage | https://openalex.org/I4210087915, https://openalex.org/I48633490 |
| authorships[0].institutions[2].country_code | US |
| authorships[0].institutions[2].display_name | Massachusetts General Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ridwan Alam |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Computer Science & Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA, Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA, Research Laboratory of Electronics, MIT, Cambridge, MA, USA, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA |
| authorships[1].author.id | https://openalex.org/A5000525310 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5509-1646 |
| authorships[1].author.display_name | Aaron D. Aguirre |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210087915 |
| authorships[1].affiliations[0].raw_affiliation_string | Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210092658 |
| authorships[1].affiliations[1].raw_affiliation_string | Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I136199984 |
| authorships[1].affiliations[2].raw_affiliation_string | Harvard Medical School, Boston, MA, USA |
| authorships[1].affiliations[3].institution_ids | https://openalex.org/I4210087915 |
| authorships[1].affiliations[3].raw_affiliation_string | Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I136199984 |
| authorships[1].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Harvard University |
| authorships[1].institutions[1].id | https://openalex.org/I4210092658 |
| authorships[1].institutions[1].ror | https://ror.org/00jjeh629 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210092658 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | Harvard–MIT Division of Health Sciences and Technology |
| authorships[1].institutions[2].id | https://openalex.org/I4210087915 |
| authorships[1].institutions[2].ror | https://ror.org/002pd6e78 |
| authorships[1].institutions[2].type | healthcare |
| authorships[1].institutions[2].lineage | https://openalex.org/I4210087915, https://openalex.org/I48633490 |
| authorships[1].institutions[2].country_code | US |
| authorships[1].institutions[2].display_name | Massachusetts General Hospital |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Aaron Aguirre |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA, Harvard Medical School, Boston, MA, USA, Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA |
| authorships[2].author.id | https://openalex.org/A5024941370 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3415-242X |
| authorships[2].author.display_name | Collin M. Stultz |
| authorships[2].countries | US |
| authorships[2].affiliations[0].raw_affiliation_string | Computer Science & Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210110987 |
| authorships[2].affiliations[1].raw_affiliation_string | Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I4210112840 |
| authorships[2].affiliations[2].raw_affiliation_string | Research Laboratory of Electronics, MIT, Cambridge, MA, USA |
| authorships[2].affiliations[3].institution_ids | https://openalex.org/I4210092658 |
| authorships[2].affiliations[3].raw_affiliation_string | Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA |
| authorships[2].affiliations[4].institution_ids | https://openalex.org/I4210087915 |
| authorships[2].affiliations[4].raw_affiliation_string | Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA |
| authorships[2].affiliations[5].raw_affiliation_string | Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA |
| authorships[2].institutions[0].id | https://openalex.org/I4210112840 |
| authorships[2].institutions[0].ror | https://ror.org/01cxdpf04 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210112840 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Cambridge Electronics (United States) |
| authorships[2].institutions[1].id | https://openalex.org/I4210092658 |
| authorships[2].institutions[1].ror | https://ror.org/00jjeh629 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210092658 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | Harvard–MIT Division of Health Sciences and Technology |
| authorships[2].institutions[2].id | https://openalex.org/I4210110987 |
| authorships[2].institutions[2].ror | https://ror.org/01wp8zh54 |
| authorships[2].institutions[2].type | facility |
| authorships[2].institutions[2].lineage | https://openalex.org/I30771326, https://openalex.org/I4210110987 |
| authorships[2].institutions[2].country_code | US |
| authorships[2].institutions[2].display_name | IIT@MIT |
| authorships[2].institutions[3].id | https://openalex.org/I4210087915 |
| authorships[2].institutions[3].ror | https://ror.org/002pd6e78 |
| authorships[2].institutions[3].type | healthcare |
| authorships[2].institutions[3].lineage | https://openalex.org/I4210087915, https://openalex.org/I48633490 |
| authorships[2].institutions[3].country_code | US |
| authorships[2].institutions[3].display_name | Massachusetts General Hospital |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Collin Stultz |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Computer Science & Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA, Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA, Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA, Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA, Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA, Research Laboratory of Electronics, MIT, Cambridge, MA, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2401.05378 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detecting QT prolongation From a Single-lead ECG With Deep Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11021 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9898999929428101 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | ECG Monitoring and Analysis |
| related_works | https://openalex.org/W2084976516, https://openalex.org/W2795169638, https://openalex.org/W2052649904, https://openalex.org/W2087234566, https://openalex.org/W3094909023, https://openalex.org/W2037177265, https://openalex.org/W4307172607, https://openalex.org/W2049162091, https://openalex.org/W1483646101, https://openalex.org/W4291786306 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2401.05378 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2401.05378 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2401.05378 |
| primary_location.id | pmh:oai:arXiv.org:2401.05378 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2401.05378 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2401.05378 |
| publication_date | 2023-12-17 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2167205834, https://openalex.org/W2012458918, https://openalex.org/W3127514899, https://openalex.org/W2806889356, https://openalex.org/W4289767221, https://openalex.org/W1677182931, https://openalex.org/W2039138983, https://openalex.org/W2012882079, https://openalex.org/W2316598919, https://openalex.org/W2090208107, https://openalex.org/W2517864976, https://openalex.org/W3089080679, https://openalex.org/W3198652536, https://openalex.org/W2303154100, https://openalex.org/W3128824338, https://openalex.org/W3032777011, https://openalex.org/W2170377367, https://openalex.org/W4242747371, https://openalex.org/W4364375020 |
| referenced_works_count | 19 |
| abstract_inverted_index.- | 41, 51 |
| abstract_inverted_index.3 | 9, 96 |
| abstract_inverted_index.a | 1, 8, 30, 84, 153, 164 |
| abstract_inverted_index.QT | 15, 18, 36, 91, 150, 187, 237 |
| abstract_inverted_index.We | 28 |
| abstract_inverted_index.an | 110, 130 |
| abstract_inverted_index.at | 77, 141 |
| abstract_inverted_index.be | 241 |
| abstract_inverted_index.in | 152, 163 |
| abstract_inverted_index.is | 126, 221, 233 |
| abstract_inverted_index.of | 3, 170, 178, 218, 229 |
| abstract_inverted_index.on | 129 |
| abstract_inverted_index.to | 53, 57, 105, 147 |
| abstract_inverted_index.we | 82 |
| abstract_inverted_index.135 | 118 |
| abstract_inverted_index.3.1 | 134 |
| abstract_inverted_index.633 | 114 |
| abstract_inverted_index.653 | 100 |
| abstract_inverted_index.667 | 138 |
| abstract_inverted_index.77% | 212 |
| abstract_inverted_index.87% | 209 |
| abstract_inverted_index.95% | 224 |
| abstract_inverted_index.ECG | 22, 39, 49, 71, 244 |
| abstract_inverted_index.For | 0, 200 |
| abstract_inverted_index.QTc | 206, 231 |
| abstract_inverted_index.The | 189, 214 |
| abstract_inverted_index.and | 52, 109, 181, 197, 211 |
| abstract_inverted_index.are | 103, 194 |
| abstract_inverted_index.can | 240 |
| abstract_inverted_index.day | 10 |
| abstract_inverted_index.for | 14, 123, 184 |
| abstract_inverted_index.set | 112, 132 |
| abstract_inverted_index.the | 42, 78, 107, 168, 201, 219, 226 |
| abstract_inverted_index.use | 54 |
| abstract_inverted_index.was | 121, 145 |
| abstract_inverted_index.0.91 | 195 |
| abstract_inverted_index.0.92 | 198 |
| abstract_inverted_index.25%. | 235 |
| abstract_inverted_index.4.22 | 68 |
| abstract_inverted_index.ECGs | 98, 116, 136, 159 |
| abstract_inverted_index.Over | 95 |
| abstract_inverted_index.deep | 31, 85, 247 |
| abstract_inverted_index.drug | 5, 65 |
| abstract_inverted_index.from | 38, 47, 73, 93, 99, 117, 137, 160, 243 |
| abstract_inverted_index.lead | 43 |
| abstract_inverted_index.mean | 175 |
| abstract_inverted_index.most | 44 |
| abstract_inverted_index.risk | 239 |
| abstract_inverted_index.than | 223 |
| abstract_inverted_index.that | 34, 89 |
| abstract_inverted_index.this | 55 |
| abstract_inverted_index.used | 104, 122, 146 |
| abstract_inverted_index.when | 225 |
| abstract_inverted_index.with | 12, 20, 208 |
| abstract_inverted_index.903.6 | 74 |
| abstract_inverted_index.QTNet | 125, 144, 173, 203 |
| abstract_inverted_index.Using | 67 |
| abstract_inverted_index.below | 234 |
| abstract_inverted_index.care. | 27 |
| abstract_inverted_index.model | 33, 56, 108, 220 |
| abstract_inverted_index.often | 45 |
| abstract_inverted_index.train | 106 |
| abstract_inverted_index.trial | 166 |
| abstract_inverted_index.using | 246 |
| abstract_inverted_index.value | 217 |
| abstract_inverted_index.would | 24 |
| abstract_inverted_index.QTNet, | 88 |
| abstract_inverted_index.detect | 58, 148 |
| abstract_inverted_index.drugs. | 172 |
| abstract_inverted_index.during | 63 |
| abstract_inverted_index.errors | 177 |
| abstract_inverted_index.infers | 35, 90 |
| abstract_inverted_index.lead-I | 40, 245 |
| abstract_inverted_index.model, | 87 |
| abstract_inverted_index.number | 2 |
| abstract_inverted_index.12-lead | 70 |
| abstract_inverted_index.12.30ms | 182 |
| abstract_inverted_index.12.63ms | 179 |
| abstract_inverted_index.General | 80 |
| abstract_inverted_index.Pearson | 191 |
| abstract_inverted_index.another | 142 |
| abstract_inverted_index.detects | 204 |
| abstract_inverted_index.develop | 29, 83 |
| abstract_inverted_index.effects | 169 |
| abstract_inverted_index.further | 127 |
| abstract_inverted_index.greater | 222 |
| abstract_inverted_index.lead-I. | 94 |
| abstract_inverted_index.loading | 6 |
| abstract_inverted_index.million | 69, 97, 135 |
| abstract_inverted_index.tracked | 242 |
| abstract_inverted_index.absolute | 176, 186 |
| abstract_inverted_index.achieves | 174 |
| abstract_inverted_index.acquired | 46 |
| abstract_inverted_index.clinical | 165 |
| abstract_inverted_index.database | 156 |
| abstract_inverted_index.enrolled | 162 |
| abstract_inverted_index.episodes | 62 |
| abstract_inverted_index.learning | 32, 86 |
| abstract_inverted_index.loading. | 66 |
| abstract_inverted_index.monitors | 23, 50 |
| abstract_inverted_index.negative | 215 |
| abstract_inverted_index.patients | 76, 102, 120, 140 |
| abstract_inverted_index.pre-test | 227 |
| abstract_inverted_index.publicly | 154 |
| abstract_inverted_index.requires | 7 |
| abstract_inverted_index.subjects | 161 |
| abstract_inverted_index.testing. | 124 |
| abstract_inverted_index.thousand | 75, 101, 115, 119, 139 |
| abstract_inverted_index.wearable | 21 |
| abstract_inverted_index.Automated | 17 |
| abstract_inverted_index.Hospital, | 81 |
| abstract_inverted_index.available | 155 |
| abstract_inverted_index.evaluated | 128 |
| abstract_inverted_index.intervals | 37, 92 |
| abstract_inverted_index.learning. | 248 |
| abstract_inverted_index.Dofetilide | 64 |
| abstract_inverted_index.ambulatory | 48 |
| abstract_inverted_index.associated | 190 |
| abstract_inverted_index.clinically | 59 |
| abstract_inverted_index.containing | 113, 133, 158 |
| abstract_inverted_index.estimating | 185 |
| abstract_inverted_index.evaluating | 167 |
| abstract_inverted_index.facilitate | 25 |
| abstract_inverted_index.intervals. | 188 |
| abstract_inverted_index.meaningful | 60 |
| abstract_inverted_index.monitoring | 13, 19 |
| abstract_inverted_index.predictive | 216 |
| abstract_inverted_index.recordings | 72 |
| abstract_inverted_index.correlation | 192 |
| abstract_inverted_index.probability | 228 |
| abstract_inverted_index.sensitivity | 210 |
| abstract_inverted_index.Drug-induced | 236 |
| abstract_inverted_index.coefficients | 193 |
| abstract_inverted_index.drug-induced | 230 |
| abstract_inverted_index.institution. | 143 |
| abstract_inverted_index.prolongation | 151, 207, 232, 238 |
| abstract_inverted_index.specificity. | 213 |
| abstract_inverted_index.Massachusetts | 79 |
| abstract_inverted_index.internal-test | 111 |
| abstract_inverted_index.prolongation. | 16 |
| abstract_inverted_index.antiarrhythmic | 171 |
| abstract_inverted_index.(internal-test) | 180, 196 |
| abstract_inverted_index.QT-prolongation | 61 |
| abstract_inverted_index.hospitalization | 11 |
| abstract_inverted_index.out-of-hospital | 26 |
| abstract_inverted_index.ECGRDVQ-dataset, | 202 |
| abstract_inverted_index.antiarrhythmics, | 4 |
| abstract_inverted_index.(ECGRDVQ-dataset) | 157 |
| abstract_inverted_index.Dofetilide-induced | 149, 205 |
| abstract_inverted_index.external-validation | 131 |
| abstract_inverted_index.(external-validation) | 183 |
| abstract_inverted_index.(external-validation). | 199 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5024941370 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I4210087915, https://openalex.org/I4210092658, https://openalex.org/I4210110987, https://openalex.org/I4210112840 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.4181236 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |