Detecting Schizophrenia With 3D Structural Brain MRI Using Deep Learning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-1895500/v1
Schizophrenia is a chronic neuropsychiatric disorder that causes distinct structural alterations within the brain. We hypothesize that deep learning applied to a structural neuroimaging dataset could detect disease-related alteration and improve classification and diagnostic accuracy. We tested this hypothesis using a single, widely available, and conventional T1-weighted MRI scan, from which we extracted the 3D whole-brain structure using standard post-processing methods. A deep learning model was then developed, optimized, and evaluated on three open datasets with T1-weighted MRI scans of patients with schizophrenia. Our proposed model outperformed the benchmark model, which was also trained with structural MR images using a 3D CNN architecture. Our model is capable of almost perfectly (area under the ROC curve = 0.987) distinguishing schizophrenia patients from healthy controls on unseen structural MRI scans. Regional analysis localized subcortical regions and ventricles as the most predictive brain regions. Subcortical structures serve a pivotal role in cognitive, affective, and social functions in humans, and structural abnormalities of these regions have been associated with schizophrenia. Our finding corroborates that schizophrenia is associated with widespread alterations in subcortical brain structure and the subcortical structural information provides prominent features in diagnostic classification. Together, these results further demonstrate the potential of deep learning to improve schizophrenia diagnosis and identify its structural neuroimaging signatures from a single, standard T1-weighted brain MRI.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-1895500/v1
- OA Status
- gold
- Cited By
- 6
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4283693703
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4283693703Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-1895500/v1Digital Object Identifier
- Title
-
Detecting Schizophrenia With 3D Structural Brain MRI Using Deep LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-10Full publication date if available
- Authors
-
Jia Guo, Junhao Zhang, Vish Rao, Ye Tian, Yanting Yang, Nicolas Acosta, Zihan Wan, Pin-Yu Lee, Chloe Zhang, Larry Kegeles, Scott A. SmallList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-1895500/v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.21203/rs.3.rs-1895500/v1Direct OA link when available
- Concepts
-
Schizophrenia (object-oriented programming), Neuroimaging, Neuroscience, Psychology, Deep learning, Artificial intelligence, Computer science, PsychiatryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1, 2023: 1, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4283693703 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-1895500/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-1895500/v1 |
| ids.openalex | https://openalex.org/W4283693703 |
| fwci | 0.96312548 |
| type | preprint |
| title | Detecting Schizophrenia With 3D Structural Brain MRI Using Deep Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10241 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Functional Brain Connectivity Studies |
| topics[1].id | https://openalex.org/T11304 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9976000189781189 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Advanced Neuroimaging Techniques and Applications |
| topics[2].id | https://openalex.org/T10378 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.994700014591217 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Advanced MRI Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776412080 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7036741375923157 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7431605 |
| concepts[0].display_name | Schizophrenia (object-oriented programming) |
| concepts[1].id | https://openalex.org/C58693492 |
| concepts[1].level | 2 |
| concepts[1].score | 0.49692848324775696 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q551875 |
| concepts[1].display_name | Neuroimaging |
| concepts[2].id | https://openalex.org/C169760540 |
| concepts[2].level | 1 |
| concepts[2].score | 0.48744896054267883 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[2].display_name | Neuroscience |
| concepts[3].id | https://openalex.org/C15744967 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4735794961452484 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[3].display_name | Psychology |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4230515658855438 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.39790964126586914 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.30779755115509033 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C118552586 |
| concepts[7].level | 1 |
| concepts[7].score | 0.22278136014938354 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[7].display_name | Psychiatry |
| keywords[0].id | https://openalex.org/keywords/schizophrenia |
| keywords[0].score | 0.7036741375923157 |
| keywords[0].display_name | Schizophrenia (object-oriented programming) |
| keywords[1].id | https://openalex.org/keywords/neuroimaging |
| keywords[1].score | 0.49692848324775696 |
| keywords[1].display_name | Neuroimaging |
| keywords[2].id | https://openalex.org/keywords/neuroscience |
| keywords[2].score | 0.48744896054267883 |
| keywords[2].display_name | Neuroscience |
| keywords[3].id | https://openalex.org/keywords/psychology |
| keywords[3].score | 0.4735794961452484 |
| keywords[3].display_name | Psychology |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.4230515658855438 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.39790964126586914 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.30779755115509033 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/psychiatry |
| keywords[7].score | 0.22278136014938354 |
| keywords[7].display_name | Psychiatry |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-1895500/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-1895500/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5043650123 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4803-0279 |
| authorships[0].author.display_name | Jia Guo |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I78577930 |
| authorships[0].affiliations[0].raw_affiliation_string | The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA |
| authorships[0].institutions[0].id | https://openalex.org/I78577930 |
| authorships[0].institutions[0].ror | https://ror.org/00hj8s172 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I78577930 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Columbia University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jia Guo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA |
| authorships[1].author.id | https://openalex.org/A5100664142 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9878-4629 |
| authorships[1].author.display_name | Junhao Zhang |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I78577930 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, Columbia University, New York, NY, USA |
| authorships[1].institutions[0].id | https://openalex.org/I78577930 |
| authorships[1].institutions[0].ror | https://ror.org/00hj8s172 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I78577930 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Columbia University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Junhao Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Biomedical Engineering, Columbia University, New York, NY, USA |
| authorships[2].author.id | https://openalex.org/A5111290568 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Vish Rao |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I78577930 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, Columbia University, New York, NY, USA |
| authorships[2].institutions[0].id | https://openalex.org/I78577930 |
| authorships[2].institutions[0].ror | https://ror.org/00hj8s172 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I78577930 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Columbia University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Vish Rao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Biomedical Engineering, Columbia University, New York, NY, USA |
| authorships[3].author.id | https://openalex.org/A5057372511 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2183-1666 |
| authorships[3].author.display_name | Ye Tian |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I78577930 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, Columbia University, New York, NY, USA |
| authorships[3].institutions[0].id | https://openalex.org/I78577930 |
| authorships[3].institutions[0].ror | https://ror.org/00hj8s172 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I78577930 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Columbia University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ye Tian |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Biomedical Engineering, Columbia University, New York, NY, USA |
| authorships[4].author.id | https://openalex.org/A5101552790 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6076-6436 |
| authorships[4].author.display_name | Yanting Yang |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I78577930 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, Columbia University, New York, NY, USA |
| authorships[4].institutions[0].id | https://openalex.org/I78577930 |
| authorships[4].institutions[0].ror | https://ror.org/00hj8s172 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I78577930 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Columbia University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yanting Yang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Biomedical Engineering, Columbia University, New York, NY, USA |
| authorships[5].author.id | https://openalex.org/A5039204448 |
| authorships[5].author.orcid | https://orcid.org/0009-0008-9278-7491 |
| authorships[5].author.display_name | Nicolas Acosta |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I78577930 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, Columbia University, New York, NY, USA |
| authorships[5].institutions[0].id | https://openalex.org/I78577930 |
| authorships[5].institutions[0].ror | https://ror.org/00hj8s172 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I78577930 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Columbia University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Nicolas Acosta |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Biomedical Engineering, Columbia University, New York, NY, USA |
| authorships[6].author.id | https://openalex.org/A5056288476 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Zihan Wan |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I78577930 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Applied Mathematics, Columbia University, New York, NY, USA |
| authorships[6].institutions[0].id | https://openalex.org/I78577930 |
| authorships[6].institutions[0].ror | https://ror.org/00hj8s172 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I78577930 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Columbia University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Zihan Wan |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Applied Mathematics, Columbia University, New York, NY, USA |
| authorships[7].author.id | https://openalex.org/A5013269675 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Pin-Yu Lee |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I78577930 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, Columbia University, New York, NY, USA |
| authorships[7].institutions[0].id | https://openalex.org/I78577930 |
| authorships[7].institutions[0].ror | https://ror.org/00hj8s172 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I78577930 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Columbia University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Pin-Yu Lee |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Biomedical Engineering, Columbia University, New York, NY, USA |
| authorships[8].author.id | https://openalex.org/A5038428604 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Chloe Zhang |
| authorships[8].affiliations[0].raw_affiliation_string | Jericho High School, Jericho, NY, USA |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Chloe Zhang |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Jericho High School, Jericho, NY, USA |
| authorships[9].author.id | https://openalex.org/A5044318759 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Larry Kegeles |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I78577930 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Radiology, Columbia University, New York, NY, USA |
| authorships[9].institutions[0].id | https://openalex.org/I78577930 |
| authorships[9].institutions[0].ror | https://ror.org/00hj8s172 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I78577930 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | Columbia University |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Larry Kegeles |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Radiology, Columbia University, New York, NY, USA |
| authorships[10].author.id | https://openalex.org/A5103178320 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-9742-8983 |
| authorships[10].author.display_name | Scott A. Small |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I78577930 |
| authorships[10].affiliations[0].raw_affiliation_string | The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA |
| authorships[10].institutions[0].id | https://openalex.org/I78577930 |
| authorships[10].institutions[0].ror | https://ror.org/00hj8s172 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I78577930 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | Columbia University |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Scott Small |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.21203/rs.3.rs-1895500/v1 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detecting Schizophrenia With 3D Structural Brain MRI Using Deep Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-25T14:43:58.451035 |
| primary_topic.id | https://openalex.org/T10241 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Functional Brain Connectivity Studies |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W3215138031, https://openalex.org/W2003288100, https://openalex.org/W3009238340, https://openalex.org/W4360585206, https://openalex.org/W4321369474, https://openalex.org/W4285208911, https://openalex.org/W3082895349, https://openalex.org/W4213079790, https://openalex.org/W2248239756 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-1895500/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-1895500/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-1895500/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-1895500/v1 |
| publication_date | 2022-08-10 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2533800772, https://openalex.org/W1984141645, https://openalex.org/W1836465849, https://openalex.org/W4235770099, https://openalex.org/W2507603780, https://openalex.org/W2400656718, https://openalex.org/W2895687530, https://openalex.org/W375186264, https://openalex.org/W3012289766, https://openalex.org/W2103688079, https://openalex.org/W4390269931, https://openalex.org/W1522301498, https://openalex.org/W4309845474, https://openalex.org/W2036057906, https://openalex.org/W2155244573, https://openalex.org/W2295107390, https://openalex.org/W3174680868, https://openalex.org/W2909450200, https://openalex.org/W2148726987, https://openalex.org/W3003442092, https://openalex.org/W3021647162, https://openalex.org/W2978685810, https://openalex.org/W1686810756, https://openalex.org/W2310177520, https://openalex.org/W2032505227, https://openalex.org/W2592929672, https://openalex.org/W2560696501, https://openalex.org/W1665214252, https://openalex.org/W66427752, https://openalex.org/W2071881327, https://openalex.org/W2546302380, https://openalex.org/W2779764073, https://openalex.org/W1985994929, https://openalex.org/W2783894827, https://openalex.org/W2153366355, https://openalex.org/W2328176404 |
| referenced_works_count | 36 |
| abstract_inverted_index.= | 116 |
| abstract_inverted_index.A | 62 |
| abstract_inverted_index.a | 3, 22, 41, 100, 145, 213 |
| abstract_inverted_index.3D | 55, 101 |
| abstract_inverted_index.MR | 97 |
| abstract_inverted_index.We | 15, 36 |
| abstract_inverted_index.as | 136 |
| abstract_inverted_index.in | 148, 154, 177, 189 |
| abstract_inverted_index.is | 2, 106, 172 |
| abstract_inverted_index.of | 80, 108, 159, 199 |
| abstract_inverted_index.on | 72, 124 |
| abstract_inverted_index.to | 21, 202 |
| abstract_inverted_index.we | 52 |
| abstract_inverted_index.CNN | 102 |
| abstract_inverted_index.MRI | 48, 78, 127 |
| abstract_inverted_index.Our | 84, 104, 167 |
| abstract_inverted_index.ROC | 114 |
| abstract_inverted_index.and | 30, 33, 45, 70, 134, 151, 156, 181, 206 |
| abstract_inverted_index.its | 208 |
| abstract_inverted_index.the | 13, 54, 88, 113, 137, 182, 197 |
| abstract_inverted_index.was | 66, 92 |
| abstract_inverted_index.MRI. | 218 |
| abstract_inverted_index.also | 93 |
| abstract_inverted_index.been | 163 |
| abstract_inverted_index.deep | 18, 63, 200 |
| abstract_inverted_index.from | 50, 121, 212 |
| abstract_inverted_index.have | 162 |
| abstract_inverted_index.most | 138 |
| abstract_inverted_index.open | 74 |
| abstract_inverted_index.role | 147 |
| abstract_inverted_index.that | 7, 17, 170 |
| abstract_inverted_index.then | 67 |
| abstract_inverted_index.this | 38 |
| abstract_inverted_index.with | 76, 82, 95, 165, 174 |
| abstract_inverted_index.(area | 111 |
| abstract_inverted_index.brain | 140, 179, 217 |
| abstract_inverted_index.could | 26 |
| abstract_inverted_index.curve | 115 |
| abstract_inverted_index.model | 65, 86, 105 |
| abstract_inverted_index.scan, | 49 |
| abstract_inverted_index.scans | 79 |
| abstract_inverted_index.serve | 144 |
| abstract_inverted_index.these | 160, 193 |
| abstract_inverted_index.three | 73 |
| abstract_inverted_index.under | 112 |
| abstract_inverted_index.using | 40, 58, 99 |
| abstract_inverted_index.which | 51, 91 |
| abstract_inverted_index.0.987) | 117 |
| abstract_inverted_index.almost | 109 |
| abstract_inverted_index.brain. | 14 |
| abstract_inverted_index.causes | 8 |
| abstract_inverted_index.detect | 27 |
| abstract_inverted_index.images | 98 |
| abstract_inverted_index.model, | 90 |
| abstract_inverted_index.scans. | 128 |
| abstract_inverted_index.social | 152 |
| abstract_inverted_index.tested | 37 |
| abstract_inverted_index.unseen | 125 |
| abstract_inverted_index.widely | 43 |
| abstract_inverted_index.within | 12 |
| abstract_inverted_index.applied | 20 |
| abstract_inverted_index.capable | 107 |
| abstract_inverted_index.chronic | 4 |
| abstract_inverted_index.dataset | 25 |
| abstract_inverted_index.finding | 168 |
| abstract_inverted_index.further | 195 |
| abstract_inverted_index.healthy | 122 |
| abstract_inverted_index.humans, | 155 |
| abstract_inverted_index.improve | 31, 203 |
| abstract_inverted_index.pivotal | 146 |
| abstract_inverted_index.regions | 133, 161 |
| abstract_inverted_index.results | 194 |
| abstract_inverted_index.single, | 42, 214 |
| abstract_inverted_index.trained | 94 |
| abstract_inverted_index.Regional | 129 |
| abstract_inverted_index.analysis | 130 |
| abstract_inverted_index.controls | 123 |
| abstract_inverted_index.datasets | 75 |
| abstract_inverted_index.disorder | 6 |
| abstract_inverted_index.distinct | 9 |
| abstract_inverted_index.features | 188 |
| abstract_inverted_index.identify | 207 |
| abstract_inverted_index.learning | 19, 64, 201 |
| abstract_inverted_index.methods. | 61 |
| abstract_inverted_index.patients | 81, 120 |
| abstract_inverted_index.proposed | 85 |
| abstract_inverted_index.provides | 186 |
| abstract_inverted_index.regions. | 141 |
| abstract_inverted_index.standard | 59, 215 |
| abstract_inverted_index.Together, | 192 |
| abstract_inverted_index.accuracy. | 35 |
| abstract_inverted_index.benchmark | 89 |
| abstract_inverted_index.diagnosis | 205 |
| abstract_inverted_index.evaluated | 71 |
| abstract_inverted_index.extracted | 53 |
| abstract_inverted_index.functions | 153 |
| abstract_inverted_index.localized | 131 |
| abstract_inverted_index.perfectly | 110 |
| abstract_inverted_index.potential | 198 |
| abstract_inverted_index.prominent | 187 |
| abstract_inverted_index.structure | 57, 180 |
| abstract_inverted_index.affective, | 150 |
| abstract_inverted_index.alteration | 29 |
| abstract_inverted_index.associated | 164, 173 |
| abstract_inverted_index.available, | 44 |
| abstract_inverted_index.cognitive, | 149 |
| abstract_inverted_index.developed, | 68 |
| abstract_inverted_index.diagnostic | 34, 190 |
| abstract_inverted_index.hypothesis | 39 |
| abstract_inverted_index.optimized, | 69 |
| abstract_inverted_index.predictive | 139 |
| abstract_inverted_index.signatures | 211 |
| abstract_inverted_index.structural | 10, 23, 96, 126, 157, 184, 209 |
| abstract_inverted_index.structures | 143 |
| abstract_inverted_index.ventricles | 135 |
| abstract_inverted_index.widespread | 175 |
| abstract_inverted_index.Subcortical | 142 |
| abstract_inverted_index.T1-weighted | 47, 77, 216 |
| abstract_inverted_index.alterations | 11, 176 |
| abstract_inverted_index.demonstrate | 196 |
| abstract_inverted_index.hypothesize | 16 |
| abstract_inverted_index.information | 185 |
| abstract_inverted_index.subcortical | 132, 178, 183 |
| abstract_inverted_index.whole-brain | 56 |
| abstract_inverted_index.conventional | 46 |
| abstract_inverted_index.corroborates | 169 |
| abstract_inverted_index.neuroimaging | 24, 210 |
| abstract_inverted_index.outperformed | 87 |
| abstract_inverted_index.Schizophrenia | 1 |
| abstract_inverted_index.abnormalities | 158 |
| abstract_inverted_index.architecture. | 103 |
| abstract_inverted_index.schizophrenia | 119, 171, 204 |
| abstract_inverted_index.classification | 32 |
| abstract_inverted_index.distinguishing | 118 |
| abstract_inverted_index.schizophrenia. | 83, 166 |
| abstract_inverted_index.classification. | 191 |
| abstract_inverted_index.disease-related | 28 |
| abstract_inverted_index.post-processing | 60 |
| abstract_inverted_index.neuropsychiatric | 5 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 11 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.682892 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |