Detecting sensor faults in wireless sensor networks for precision agriculture using long short-term memory Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.11591/ijece.v15i4.pp3803-3812
The reliable acquisition of soil data from wireless sensor networks (WSNs) deployed in farmlands is critical for optimizing precision agriculture (PA) practices. However, sensor faults can significantly degrade data quality, hindering PA techniques. Our work proposes a novel long short-term memory (LSTM) network-based method for fault detection in WSNs for PA applications. Unlike traditional methods, our approach utilizes a lightweight, transfer learning-based LSTM architecture specifically designed to address the challenge of limited labeled training data availability in agricultural settings. The model effectively captures temporal dependencies within sensor data sequences, enabling accurate predictions of normal sensor behavior and identification of anomalies indicative of faults. Experimental validation confirms the effectiveness of our method in diverse real-world WSN deployments, ensuring data integrity and enhancing network reliability. This study paves the way for improved decision-making and optimized PA practices.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.11591/ijece.v15i4.pp3803-3812
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412825937
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412825937Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.11591/ijece.v15i4.pp3803-3812Digital Object Identifier
- Title
-
Detecting sensor faults in wireless sensor networks for precision agriculture using long short-term memoryWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-01Full publication date if available
- Authors
-
Yassine Aitamar, Jamal El AbbadiList of authors in order
- Landing page
-
https://doi.org/10.11591/ijece.v15i4.pp3803-3812Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.11591/ijece.v15i4.pp3803-3812Direct OA link when available
- Concepts
-
Wireless sensor network, Term (time), Computer science, Wireless, Real-time computing, Precision agriculture, Long short term memory, Agriculture, Computer network, Telecommunications, Artificial intelligence, Geography, Artificial neural network, Physics, Recurrent neural network, Archaeology, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412825937 |
|---|---|
| doi | https://doi.org/10.11591/ijece.v15i4.pp3803-3812 |
| ids.doi | https://doi.org/10.11591/ijece.v15i4.pp3803-3812 |
| ids.openalex | https://openalex.org/W4412825937 |
| fwci | 0.0 |
| type | article |
| title | Detecting sensor faults in wireless sensor networks for precision agriculture using long short-term memory |
| biblio.issue | 4 |
| biblio.volume | 15 |
| biblio.last_page | 3803 |
| biblio.first_page | 3803 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9837999939918518 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T11312 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9692000150680542 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Soil Moisture and Remote Sensing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C24590314 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7306864261627197 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q336038 |
| concepts[0].display_name | Wireless sensor network |
| concepts[1].id | https://openalex.org/C61797465 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6911007165908813 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1188986 |
| concepts[1].display_name | Term (time) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5539028644561768 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C555944384 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4484623670578003 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[3].display_name | Wireless |
| concepts[4].id | https://openalex.org/C79403827 |
| concepts[4].level | 1 |
| concepts[4].score | 0.44277438521385193 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[4].display_name | Real-time computing |
| concepts[5].id | https://openalex.org/C120217122 |
| concepts[5].level | 3 |
| concepts[5].score | 0.43673816323280334 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q740083 |
| concepts[5].display_name | Precision agriculture |
| concepts[6].id | https://openalex.org/C133488467 |
| concepts[6].level | 4 |
| concepts[6].score | 0.4235379099845886 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6673524 |
| concepts[6].display_name | Long short term memory |
| concepts[7].id | https://openalex.org/C118518473 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3188595175743103 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11451 |
| concepts[7].display_name | Agriculture |
| concepts[8].id | https://openalex.org/C31258907 |
| concepts[8].level | 1 |
| concepts[8].score | 0.29077452421188354 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[8].display_name | Computer network |
| concepts[9].id | https://openalex.org/C76155785 |
| concepts[9].level | 1 |
| concepts[9].score | 0.24416545033454895 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[9].display_name | Telecommunications |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.23165327310562134 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.13320091366767883 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C50644808 |
| concepts[12].level | 2 |
| concepts[12].score | 0.08606195449829102 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[12].display_name | Artificial neural network |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C147168706 |
| concepts[14].level | 3 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[14].display_name | Recurrent neural network |
| concepts[15].id | https://openalex.org/C166957645 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[15].display_name | Archaeology |
| concepts[16].id | https://openalex.org/C62520636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[16].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/wireless-sensor-network |
| keywords[0].score | 0.7306864261627197 |
| keywords[0].display_name | Wireless sensor network |
| keywords[1].id | https://openalex.org/keywords/term |
| keywords[1].score | 0.6911007165908813 |
| keywords[1].display_name | Term (time) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5539028644561768 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/wireless |
| keywords[3].score | 0.4484623670578003 |
| keywords[3].display_name | Wireless |
| keywords[4].id | https://openalex.org/keywords/real-time-computing |
| keywords[4].score | 0.44277438521385193 |
| keywords[4].display_name | Real-time computing |
| keywords[5].id | https://openalex.org/keywords/precision-agriculture |
| keywords[5].score | 0.43673816323280334 |
| keywords[5].display_name | Precision agriculture |
| keywords[6].id | https://openalex.org/keywords/long-short-term-memory |
| keywords[6].score | 0.4235379099845886 |
| keywords[6].display_name | Long short term memory |
| keywords[7].id | https://openalex.org/keywords/agriculture |
| keywords[7].score | 0.3188595175743103 |
| keywords[7].display_name | Agriculture |
| keywords[8].id | https://openalex.org/keywords/computer-network |
| keywords[8].score | 0.29077452421188354 |
| keywords[8].display_name | Computer network |
| keywords[9].id | https://openalex.org/keywords/telecommunications |
| keywords[9].score | 0.24416545033454895 |
| keywords[9].display_name | Telecommunications |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.23165327310562134 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.13320091366767883 |
| keywords[11].display_name | Geography |
| keywords[12].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[12].score | 0.08606195449829102 |
| keywords[12].display_name | Artificial neural network |
| language | en |
| locations[0].id | doi:10.11591/ijece.v15i4.pp3803-3812 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210235676 |
| locations[0].source.issn | 2722-256X, 2722-2578 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2722-256X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Power Electronics and Drive Systems/International Journal of Electrical and Computer Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315009 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Electrical and Computer Engineering (IJECE) |
| locations[0].landing_page_url | https://doi.org/10.11591/ijece.v15i4.pp3803-3812 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5115513821 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yassine Aitamar |
| authorships[0].countries | MA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I126477371 |
| authorships[0].affiliations[0].raw_affiliation_string | Mohammed V University in Rabat |
| authorships[0].institutions[0].id | https://openalex.org/I126477371 |
| authorships[0].institutions[0].ror | https://ror.org/00r8w8f84 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I126477371 |
| authorships[0].institutions[0].country_code | MA |
| authorships[0].institutions[0].display_name | Mohammed V University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yassine Aitamar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Mohammed V University in Rabat |
| authorships[1].author.id | https://openalex.org/A5087594603 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jamal El Abbadi |
| authorships[1].countries | MA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I126477371 |
| authorships[1].affiliations[0].raw_affiliation_string | Mohammed V University in Rabat |
| authorships[1].institutions[0].id | https://openalex.org/I126477371 |
| authorships[1].institutions[0].ror | https://ror.org/00r8w8f84 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I126477371 |
| authorships[1].institutions[0].country_code | MA |
| authorships[1].institutions[0].display_name | Mohammed V University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Jamal El Abbadi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Mohammed V University in Rabat |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.11591/ijece.v15i4.pp3803-3812 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detecting sensor faults in wireless sensor networks for precision agriculture using long short-term memory |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9837999939918518 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W2980611886, https://openalex.org/W42295635, https://openalex.org/W1973996291, https://openalex.org/W2381688409, https://openalex.org/W2330575325, https://openalex.org/W2163803519, https://openalex.org/W2497592525, https://openalex.org/W1975451135, https://openalex.org/W3096145648, https://openalex.org/W4401807425 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.11591/ijece.v15i4.pp3803-3812 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210235676 |
| best_oa_location.source.issn | 2722-256X, 2722-2578 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2722-256X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Power Electronics and Drive Systems/International Journal of Electrical and Computer Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Electrical and Computer Engineering (IJECE) |
| best_oa_location.landing_page_url | https://doi.org/10.11591/ijece.v15i4.pp3803-3812 |
| primary_location.id | doi:10.11591/ijece.v15i4.pp3803-3812 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210235676 |
| primary_location.source.issn | 2722-256X, 2722-2578 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2722-256X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Power Electronics and Drive Systems/International Journal of Electrical and Computer Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Electrical and Computer Engineering (IJECE) |
| primary_location.landing_page_url | https://doi.org/10.11591/ijece.v15i4.pp3803-3812 |
| publication_date | 2025-08-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 36, 58 |
| abstract_inverted_index.PA | 31, 50, 133 |
| abstract_inverted_index.in | 12, 47, 76, 111 |
| abstract_inverted_index.is | 14 |
| abstract_inverted_index.of | 3, 70, 92, 98, 101, 108 |
| abstract_inverted_index.to | 66 |
| abstract_inverted_index.Our | 33 |
| abstract_inverted_index.The | 0, 79 |
| abstract_inverted_index.WSN | 114 |
| abstract_inverted_index.and | 96, 119, 131 |
| abstract_inverted_index.can | 25 |
| abstract_inverted_index.for | 16, 44, 49, 128 |
| abstract_inverted_index.our | 55, 109 |
| abstract_inverted_index.the | 68, 106, 126 |
| abstract_inverted_index.way | 127 |
| abstract_inverted_index.(PA) | 20 |
| abstract_inverted_index.LSTM | 62 |
| abstract_inverted_index.This | 123 |
| abstract_inverted_index.WSNs | 48 |
| abstract_inverted_index.data | 5, 28, 74, 87, 117 |
| abstract_inverted_index.from | 6 |
| abstract_inverted_index.long | 38 |
| abstract_inverted_index.soil | 4 |
| abstract_inverted_index.work | 34 |
| abstract_inverted_index.fault | 45 |
| abstract_inverted_index.model | 80 |
| abstract_inverted_index.novel | 37 |
| abstract_inverted_index.paves | 125 |
| abstract_inverted_index.study | 124 |
| abstract_inverted_index.(LSTM) | 41 |
| abstract_inverted_index.(WSNs) | 10 |
| abstract_inverted_index.Unlike | 52 |
| abstract_inverted_index.faults | 24 |
| abstract_inverted_index.memory | 40 |
| abstract_inverted_index.method | 43, 110 |
| abstract_inverted_index.normal | 93 |
| abstract_inverted_index.sensor | 8, 23, 86, 94 |
| abstract_inverted_index.within | 85 |
| abstract_inverted_index.address | 67 |
| abstract_inverted_index.degrade | 27 |
| abstract_inverted_index.diverse | 112 |
| abstract_inverted_index.faults. | 102 |
| abstract_inverted_index.labeled | 72 |
| abstract_inverted_index.limited | 71 |
| abstract_inverted_index.network | 121 |
| abstract_inverted_index.However, | 22 |
| abstract_inverted_index.accurate | 90 |
| abstract_inverted_index.approach | 56 |
| abstract_inverted_index.behavior | 95 |
| abstract_inverted_index.captures | 82 |
| abstract_inverted_index.confirms | 105 |
| abstract_inverted_index.critical | 15 |
| abstract_inverted_index.deployed | 11 |
| abstract_inverted_index.designed | 65 |
| abstract_inverted_index.enabling | 89 |
| abstract_inverted_index.ensuring | 116 |
| abstract_inverted_index.improved | 129 |
| abstract_inverted_index.methods, | 54 |
| abstract_inverted_index.networks | 9 |
| abstract_inverted_index.proposes | 35 |
| abstract_inverted_index.quality, | 29 |
| abstract_inverted_index.reliable | 1 |
| abstract_inverted_index.temporal | 83 |
| abstract_inverted_index.training | 73 |
| abstract_inverted_index.transfer | 60 |
| abstract_inverted_index.utilizes | 57 |
| abstract_inverted_index.wireless | 7 |
| abstract_inverted_index.anomalies | 99 |
| abstract_inverted_index.challenge | 69 |
| abstract_inverted_index.detection | 46 |
| abstract_inverted_index.enhancing | 120 |
| abstract_inverted_index.farmlands | 13 |
| abstract_inverted_index.hindering | 30 |
| abstract_inverted_index.integrity | 118 |
| abstract_inverted_index.optimized | 132 |
| abstract_inverted_index.precision | 18 |
| abstract_inverted_index.settings. | 78 |
| abstract_inverted_index.indicative | 100 |
| abstract_inverted_index.optimizing | 17 |
| abstract_inverted_index.practices. | 21, 134 |
| abstract_inverted_index.real-world | 113 |
| abstract_inverted_index.sequences, | 88 |
| abstract_inverted_index.short-term | 39 |
| abstract_inverted_index.validation | 104 |
| abstract_inverted_index.acquisition | 2 |
| abstract_inverted_index.agriculture | 19 |
| abstract_inverted_index.effectively | 81 |
| abstract_inverted_index.predictions | 91 |
| abstract_inverted_index.techniques. | 32 |
| abstract_inverted_index.traditional | 53 |
| abstract_inverted_index.Experimental | 103 |
| abstract_inverted_index.agricultural | 77 |
| abstract_inverted_index.architecture | 63 |
| abstract_inverted_index.availability | 75 |
| abstract_inverted_index.dependencies | 84 |
| abstract_inverted_index.deployments, | 115 |
| abstract_inverted_index.lightweight, | 59 |
| abstract_inverted_index.reliability. | 122 |
| abstract_inverted_index.specifically | 64 |
| abstract_inverted_index.applications. | 51 |
| abstract_inverted_index.effectiveness | 107 |
| abstract_inverted_index.network-based | 42 |
| abstract_inverted_index.significantly | 26 |
| abstract_inverted_index.identification | 97 |
| abstract_inverted_index.learning-based | 61 |
| abstract_inverted_index.decision-making | 130 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.22798805 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |