Detecting the Background-Similar Objects in Complex Transportation Scenes Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/tits.2023.3268378
With the development of intelligent transportation systems, most human objects can be accurately detected in normal road scenes. However, the detection accuracy usually decreases sharply when the pedestrians are merged into the background with very similar colors or textures. In this paper, a camouflaged object detection method is proposed to detect the pedestrians or vehicles from the highly similar background. Specifically, we design a guide-learning-based multi-scale detection network (GLNet) to distinguish the weak semantic distinction between the pedestrian and its similar background, and output an accurate segmentation map to the autonomous driving system. The proposed GLNet mainly consists of a backbone network for basic feature extraction, a guide-learning module (GLM) to generate the principal prediction map, and a multi-scale feature enhancement module (MFEM) for prediction map refinement. Based on the guide learning and coarse-to-fine strategy, the final prediction map can be obtained with the proposed GLNet which precisely describes the position and contour information of the pedestrians or vehicles. Extensive experiments on four benchmark datasets, e.g., CHAMELEON, CAMO, COD10K, and NC4K, demonstrate the superiority of the proposed GLNet compared with several existing state-of-the-art methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tits.2023.3268378
- OA Status
- green
- Cited By
- 7
- References
- 52
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4367146759
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4367146759Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tits.2023.3268378Digital Object Identifier
- Title
-
Detecting the Background-Similar Objects in Complex Transportation ScenesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-26Full publication date if available
- Authors
-
Bangyong Sun, Ming Ma, Nianzeng Yuan, Junhuai Li, Tao YuList of authors in order
- Landing page
-
https://doi.org/10.1109/tits.2023.3268378Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://ir.opt.ac.cn/handle/181661/96463Direct OA link when available
- Concepts
-
Artificial intelligence, Pedestrian detection, Computer science, Benchmark (surveying), Object detection, Feature extraction, Segmentation, Feature (linguistics), Computer vision, Pedestrian, Pattern recognition (psychology), Intelligent transportation system, Scale (ratio), Position (finance), Geography, Engineering, Cartography, Linguistics, Archaeology, Philosophy, Finance, Civil engineering, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
52Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4367146759 |
|---|---|
| doi | https://doi.org/10.1109/tits.2023.3268378 |
| ids.doi | https://doi.org/10.1109/tits.2023.3268378 |
| ids.openalex | https://openalex.org/W4367146759 |
| fwci | 1.27377838 |
| type | article |
| title | Detecting the Background-Similar Objects in Complex Transportation Scenes |
| awards[0].id | https://openalex.org/G4350466949 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 62076199 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G2602237561 |
| awards[1].funder_id | https://openalex.org/F4320321133 |
| awards[1].display_name | |
| awards[1].funder_award_id | SKLST202214 |
| awards[1].funder_display_name | Chinese Academy of Sciences |
| biblio.issue | 3 |
| biblio.volume | 25 |
| biblio.last_page | 2932 |
| biblio.first_page | 2920 |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10331 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9965000152587891 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Video Surveillance and Tracking Methods |
| topics[2].id | https://openalex.org/T13282 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.993399977684021 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2212 |
| topics[2].subfield.display_name | Ocean Engineering |
| topics[2].display_name | Automated Road and Building Extraction |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320321133 |
| funders[1].ror | https://ror.org/034t30j35 |
| funders[1].display_name | Chinese Academy of Sciences |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7481037974357605 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C2780156472 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7179610729217529 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2355550 |
| concepts[1].display_name | Pedestrian detection |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.713717520236969 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C185798385 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6637285351753235 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[3].display_name | Benchmark (surveying) |
| concepts[4].id | https://openalex.org/C2776151529 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6316863894462585 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[4].display_name | Object detection |
| concepts[5].id | https://openalex.org/C52622490 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6131630539894104 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[5].display_name | Feature extraction |
| concepts[6].id | https://openalex.org/C89600930 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5983176827430725 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[6].display_name | Segmentation |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5518374443054199 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.5412513613700867 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C2777113093 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5249281525611877 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q221488 |
| concepts[9].display_name | Pedestrian |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.5045231580734253 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C47796450 |
| concepts[11].level | 2 |
| concepts[11].score | 0.48013779520988464 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q508378 |
| concepts[11].display_name | Intelligent transportation system |
| concepts[12].id | https://openalex.org/C2778755073 |
| concepts[12].level | 2 |
| concepts[12].score | 0.43464571237564087 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[12].display_name | Scale (ratio) |
| concepts[13].id | https://openalex.org/C198082294 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4294903576374054 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3399648 |
| concepts[13].display_name | Position (finance) |
| concepts[14].id | https://openalex.org/C205649164 |
| concepts[14].level | 0 |
| concepts[14].score | 0.1564951241016388 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[14].display_name | Geography |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.14257431030273438 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C58640448 |
| concepts[16].level | 1 |
| concepts[16].score | 0.07735583186149597 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[16].display_name | Cartography |
| concepts[17].id | https://openalex.org/C41895202 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[17].display_name | Linguistics |
| concepts[18].id | https://openalex.org/C166957645 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[18].display_name | Archaeology |
| concepts[19].id | https://openalex.org/C138885662 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[19].display_name | Philosophy |
| concepts[20].id | https://openalex.org/C10138342 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[20].display_name | Finance |
| concepts[21].id | https://openalex.org/C147176958 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q77590 |
| concepts[21].display_name | Civil engineering |
| concepts[22].id | https://openalex.org/C162324750 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[22].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7481037974357605 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/pedestrian-detection |
| keywords[1].score | 0.7179610729217529 |
| keywords[1].display_name | Pedestrian detection |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.713717520236969 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/benchmark |
| keywords[3].score | 0.6637285351753235 |
| keywords[3].display_name | Benchmark (surveying) |
| keywords[4].id | https://openalex.org/keywords/object-detection |
| keywords[4].score | 0.6316863894462585 |
| keywords[4].display_name | Object detection |
| keywords[5].id | https://openalex.org/keywords/feature-extraction |
| keywords[5].score | 0.6131630539894104 |
| keywords[5].display_name | Feature extraction |
| keywords[6].id | https://openalex.org/keywords/segmentation |
| keywords[6].score | 0.5983176827430725 |
| keywords[6].display_name | Segmentation |
| keywords[7].id | https://openalex.org/keywords/feature |
| keywords[7].score | 0.5518374443054199 |
| keywords[7].display_name | Feature (linguistics) |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.5412513613700867 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/pedestrian |
| keywords[9].score | 0.5249281525611877 |
| keywords[9].display_name | Pedestrian |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.5045231580734253 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/intelligent-transportation-system |
| keywords[11].score | 0.48013779520988464 |
| keywords[11].display_name | Intelligent transportation system |
| keywords[12].id | https://openalex.org/keywords/scale |
| keywords[12].score | 0.43464571237564087 |
| keywords[12].display_name | Scale (ratio) |
| keywords[13].id | https://openalex.org/keywords/position |
| keywords[13].score | 0.4294903576374054 |
| keywords[13].display_name | Position (finance) |
| keywords[14].id | https://openalex.org/keywords/geography |
| keywords[14].score | 0.1564951241016388 |
| keywords[14].display_name | Geography |
| keywords[15].id | https://openalex.org/keywords/engineering |
| keywords[15].score | 0.14257431030273438 |
| keywords[15].display_name | Engineering |
| keywords[16].id | https://openalex.org/keywords/cartography |
| keywords[16].score | 0.07735583186149597 |
| keywords[16].display_name | Cartography |
| language | en |
| locations[0].id | doi:10.1109/tits.2023.3268378 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S144771191 |
| locations[0].source.issn | 1524-9050, 1558-0016 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1524-9050 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Intelligent Transportation Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Intelligent Transportation Systems |
| locations[0].landing_page_url | https://doi.org/10.1109/tits.2023.3268378 |
| locations[1].id | pmh:oai:ir.opt.ac.cn:181661/96463 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4377196962 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Institutional Repository of Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (Xian Institute of Optics and Precision Mechanics) |
| locations[1].source.host_organization | https://openalex.org/I4210144662 |
| locations[1].source.host_organization_name | Xi'an Institute of Optics and Precision Mechanics |
| locations[1].source.host_organization_lineage | https://openalex.org/I4210144662 |
| locations[1].license | cc-by-nc-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | 期刊论文 |
| locations[1].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://ir.opt.ac.cn/handle/181661/96463 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5070913913 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0265-1785 |
| authorships[0].author.display_name | Bangyong Sun |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210131919 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Printing, Packaging and Digital Media, Xi’an University of Technology, Xi’an, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[0].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xi'an University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bangyong Sun |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Printing, Packaging and Digital Media, Xi’an University of Technology, Xi’an, China |
| authorships[1].author.id | https://openalex.org/A5064669458 |
| authorships[1].author.orcid | https://orcid.org/0009-0008-7940-9664 |
| authorships[1].author.display_name | Ming Ma |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210131919 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Printing, Packaging and Digital Media, Xi’an University of Technology, Xi’an, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[1].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xi'an University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ming Ma |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Printing, Packaging and Digital Media, Xi’an University of Technology, Xi’an, China |
| authorships[2].author.id | https://openalex.org/A5018762110 |
| authorships[2].author.orcid | https://orcid.org/0009-0004-7183-7294 |
| authorships[2].author.display_name | Nianzeng Yuan |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nianzeng Yuan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, China |
| authorships[3].author.id | https://openalex.org/A5046113804 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5483-5175 |
| authorships[3].author.display_name | Junhuai Li |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, China |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Junhuai Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, China |
| authorships[4].author.id | https://openalex.org/A5100707702 |
| authorships[4].author.orcid | https://orcid.org/0009-0003-5701-9642 |
| authorships[4].author.display_name | Tao Yu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210144662 |
| authorships[4].affiliations[0].raw_affiliation_string | Key Laboratory of Spectral Imaging Technology of CAS, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, China |
| authorships[4].institutions[0].id | https://openalex.org/I19820366 |
| authorships[4].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[4].institutions[1].id | https://openalex.org/I4210144662 |
| authorships[4].institutions[1].ror | https://ror.org/0444j5556 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210144662 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Xi'an Institute of Optics and Precision Mechanics |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Tao Yu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Key Laboratory of Spectral Imaging Technology of CAS, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://ir.opt.ac.cn/handle/181661/96463 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detecting the Background-Similar Objects in Complex Transportation Scenes |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2972620127, https://openalex.org/W2981141433, https://openalex.org/W2802018156, https://openalex.org/W4313315626, https://openalex.org/W2101531944, https://openalex.org/W2913302899, https://openalex.org/W2922437833, https://openalex.org/W2100052226, https://openalex.org/W4312696271, https://openalex.org/W4223892596 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:ir.opt.ac.cn:181661/96463 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4377196962 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Institutional Repository of Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (Xian Institute of Optics and Precision Mechanics) |
| best_oa_location.source.host_organization | https://openalex.org/I4210144662 |
| best_oa_location.source.host_organization_name | Xi'an Institute of Optics and Precision Mechanics |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210144662 |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | 期刊论文 |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://ir.opt.ac.cn/handle/181661/96463 |
| primary_location.id | doi:10.1109/tits.2023.3268378 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S144771191 |
| primary_location.source.issn | 1524-9050, 1558-0016 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1524-9050 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Intelligent Transportation Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Intelligent Transportation Systems |
| primary_location.landing_page_url | https://doi.org/10.1109/tits.2023.3268378 |
| publication_date | 2023-04-26 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2471864214, https://openalex.org/W2618608106, https://openalex.org/W3027763298, https://openalex.org/W3092344722, https://openalex.org/W2121034719, https://openalex.org/W2044712054, https://openalex.org/W1513184069, https://openalex.org/W3034684132, https://openalex.org/W3168112135, https://openalex.org/W3173782971, https://openalex.org/W3164711802, https://openalex.org/W3164098653, https://openalex.org/W2943545929, https://openalex.org/W3176152216, https://openalex.org/W3095586648, https://openalex.org/W2963112696, https://openalex.org/W2990984982, https://openalex.org/W3190335749, https://openalex.org/W3211937532, https://openalex.org/W4213181610, https://openalex.org/W3179443972, https://openalex.org/W3163197207, https://openalex.org/W4225257078, https://openalex.org/W4315490105, https://openalex.org/W4312258849, https://openalex.org/W2490270993, https://openalex.org/W3005914028, https://openalex.org/W2565639579, https://openalex.org/W2963857746, https://openalex.org/W2899607431, https://openalex.org/W3034971973, https://openalex.org/W6762718338, https://openalex.org/W6682889407, https://openalex.org/W2560023338, https://openalex.org/W2598666589, https://openalex.org/W6801209141, https://openalex.org/W2132083787, https://openalex.org/W2961348656, https://openalex.org/W2780861787, https://openalex.org/W1580389772, https://openalex.org/W2963868681, https://openalex.org/W1994922096, https://openalex.org/W2963529609, https://openalex.org/W1982075130, https://openalex.org/W6766978945, https://openalex.org/W2108598243, https://openalex.org/W4312806903, https://openalex.org/W3035633116, https://openalex.org/W3203700770, https://openalex.org/W2998249728, https://openalex.org/W3109988092, https://openalex.org/W3193979638 |
| referenced_works_count | 52 |
| abstract_inverted_index.a | 42, 63, 99, 106, 117 |
| abstract_inverted_index.In | 39 |
| abstract_inverted_index.an | 84 |
| abstract_inverted_index.be | 11, 140 |
| abstract_inverted_index.in | 14 |
| abstract_inverted_index.is | 47 |
| abstract_inverted_index.of | 3, 98, 154, 174 |
| abstract_inverted_index.on | 128, 161 |
| abstract_inverted_index.or | 37, 53, 157 |
| abstract_inverted_index.to | 49, 69, 88, 110 |
| abstract_inverted_index.we | 61 |
| abstract_inverted_index.The | 93 |
| abstract_inverted_index.and | 78, 82, 116, 132, 151, 169 |
| abstract_inverted_index.are | 28 |
| abstract_inverted_index.can | 10, 139 |
| abstract_inverted_index.for | 102, 123 |
| abstract_inverted_index.its | 79 |
| abstract_inverted_index.map | 87, 125, 138 |
| abstract_inverted_index.the | 1, 19, 26, 31, 51, 56, 71, 76, 89, 112, 129, 135, 143, 149, 155, 172, 175 |
| abstract_inverted_index.four | 162 |
| abstract_inverted_index.from | 55 |
| abstract_inverted_index.into | 30 |
| abstract_inverted_index.map, | 115 |
| abstract_inverted_index.most | 7 |
| abstract_inverted_index.road | 16 |
| abstract_inverted_index.this | 40 |
| abstract_inverted_index.very | 34 |
| abstract_inverted_index.weak | 72 |
| abstract_inverted_index.when | 25 |
| abstract_inverted_index.with | 33, 142, 179 |
| abstract_inverted_index.(GLM) | 109 |
| abstract_inverted_index.Based | 127 |
| abstract_inverted_index.CAMO, | 167 |
| abstract_inverted_index.GLNet | 95, 145, 177 |
| abstract_inverted_index.NC4K, | 170 |
| abstract_inverted_index.basic | 103 |
| abstract_inverted_index.e.g., | 165 |
| abstract_inverted_index.final | 136 |
| abstract_inverted_index.guide | 130 |
| abstract_inverted_index.human | 8 |
| abstract_inverted_index.which | 146 |
| abstract_inverted_index.(MFEM) | 122 |
| abstract_inverted_index.colors | 36 |
| abstract_inverted_index.design | 62 |
| abstract_inverted_index.detect | 50 |
| abstract_inverted_index.highly | 57 |
| abstract_inverted_index.mainly | 96 |
| abstract_inverted_index.merged | 29 |
| abstract_inverted_index.method | 46 |
| abstract_inverted_index.module | 108, 121 |
| abstract_inverted_index.normal | 15 |
| abstract_inverted_index.object | 44 |
| abstract_inverted_index.output | 83 |
| abstract_inverted_index.paper, | 41 |
| abstract_inverted_index.(GLNet) | 68 |
| abstract_inverted_index.COD10K, | 168 |
| abstract_inverted_index.between | 75 |
| abstract_inverted_index.contour | 152 |
| abstract_inverted_index.driving | 91 |
| abstract_inverted_index.feature | 104, 119 |
| abstract_inverted_index.network | 67, 101 |
| abstract_inverted_index.objects | 9 |
| abstract_inverted_index.scenes. | 17 |
| abstract_inverted_index.several | 180 |
| abstract_inverted_index.sharply | 24 |
| abstract_inverted_index.similar | 35, 58, 80 |
| abstract_inverted_index.system. | 92 |
| abstract_inverted_index.usually | 22 |
| abstract_inverted_index.However, | 18 |
| abstract_inverted_index.accuracy | 21 |
| abstract_inverted_index.accurate | 85 |
| abstract_inverted_index.backbone | 100 |
| abstract_inverted_index.compared | 178 |
| abstract_inverted_index.consists | 97 |
| abstract_inverted_index.detected | 13 |
| abstract_inverted_index.existing | 181 |
| abstract_inverted_index.generate | 111 |
| abstract_inverted_index.learning | 131 |
| abstract_inverted_index.obtained | 141 |
| abstract_inverted_index.position | 150 |
| abstract_inverted_index.proposed | 48, 94, 144, 176 |
| abstract_inverted_index.semantic | 73 |
| abstract_inverted_index.systems, | 6 |
| abstract_inverted_index.vehicles | 54 |
| abstract_inverted_index.Extensive | 159 |
| abstract_inverted_index.benchmark | 163 |
| abstract_inverted_index.datasets, | 164 |
| abstract_inverted_index.decreases | 23 |
| abstract_inverted_index.describes | 148 |
| abstract_inverted_index.detection | 20, 45, 66 |
| abstract_inverted_index.precisely | 147 |
| abstract_inverted_index.principal | 113 |
| abstract_inverted_index.strategy, | 134 |
| abstract_inverted_index.textures. | 38 |
| abstract_inverted_index.vehicles. | 158 |
| abstract_inverted_index.CHAMELEON, | 166 |
| abstract_inverted_index.accurately | 12 |
| abstract_inverted_index.autonomous | 90 |
| abstract_inverted_index.background | 32 |
| abstract_inverted_index.pedestrian | 77 |
| abstract_inverted_index.prediction | 114, 124, 137 |
| abstract_inverted_index.background, | 81 |
| abstract_inverted_index.background. | 59 |
| abstract_inverted_index.camouflaged | 43 |
| abstract_inverted_index.demonstrate | 171 |
| abstract_inverted_index.development | 2 |
| abstract_inverted_index.distinction | 74 |
| abstract_inverted_index.distinguish | 70 |
| abstract_inverted_index.enhancement | 120 |
| abstract_inverted_index.experiments | 160 |
| abstract_inverted_index.extraction, | 105 |
| abstract_inverted_index.information | 153 |
| abstract_inverted_index.intelligent | 4 |
| abstract_inverted_index.multi-scale | 65, 118 |
| abstract_inverted_index.pedestrians | 27, 52, 156 |
| abstract_inverted_index.refinement. | 126 |
| abstract_inverted_index.superiority | 173 |
| abstract_inverted_index.segmentation | 86 |
| abstract_inverted_index.<p>With | 0 |
| abstract_inverted_index.Specifically, | 60 |
| abstract_inverted_index.coarse-to-fine | 133 |
| abstract_inverted_index.guide-learning | 107 |
| abstract_inverted_index.transportation | 5 |
| abstract_inverted_index.state-of-the-art | 182 |
| abstract_inverted_index.methods.</p> | 183 |
| abstract_inverted_index.guide-learning-based | 64 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.77824583 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |