Detection and attribution of cereal yield losses using Sentinel-2 and weather data: A case study in South Australia Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.isprsjprs.2024.05.021
Weather extremes affect crop production. Remote sensing can help to detect crop damage and estimate lost yield due to weather extremes over large spatial extents. We propose a novel scalable method to predict in-season yield losses at the sub-field level and attribute these to weather extremes. To assess our method's potential, we conducted a proof-of-concept case study on winter cereal paddocks in South Australia using data from 2017 to 2022. To detect crop growth anomalies throughout the growing season, we aligned a two-band Enhanced Vegetation Index (EVI2) time series from Sentinel-2 with thermal time. The deviation between the expected and observed EVI2 time series was defined as the Crop Damage Index (CDI). We assessed the performance of the CDI within specific phenological windows to predict yield loss. Finally, by comparing instances of substantial increase in CDI with different extreme weather indicators, we explored which (combinations of) extreme weather events were likely responsible for the experienced yield reduction. We found that the use of thermal time diminished the temporal deviation of EVI2 time series between years, resulting in the effective construction of typical stress-free crop growth curves. Thermal-time-based EVI2 time series resulted in better prediction of yield reduction than those based on calendar dates. Yield reduction could be predicted before grain-filling (approximately two months before harvest) with an R2 of 0.83 for wheat and 0.91 for barley. Finally, the combined analysis of CDI curves and extreme weather indices allowed for timely detection of weather-related causes of crop damage, which also captured the spatial variations of crop damage attribution at sub-field level. The proposed framework provides a basis for early warning of crop damage and attributing the damage to weather extremes in near real-time, which should help to adopt appropriate crop protection strategies.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.isprsjprs.2024.05.021
- OA Status
- hybrid
- Cited By
- 8
- References
- 119
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399168875
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399168875Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.isprsjprs.2024.05.021Digital Object Identifier
- Title
-
Detection and attribution of cereal yield losses using Sentinel-2 and weather data: A case study in South AustraliaWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-30Full publication date if available
- Authors
-
Keke Duan, Anton Vrieling, Michael Schlund, Uday Nidumolu, Christina Ratcliff, Simon Collings, Andrew NelsonList of authors in order
- Landing page
-
https://doi.org/10.1016/j.isprsjprs.2024.05.021Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.isprsjprs.2024.05.021Direct OA link when available
- Concepts
-
Yield (engineering), Attribution, Environmental science, Meteorology, Climatology, Weather patterns, Remote sensing, Geography, Physical geography, Climate change, Ecology, Geology, Biology, Psychology, Materials science, Metallurgy, Social psychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8Per-year citation counts (last 5 years)
- References (count)
-
119Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399168875 |
|---|---|
| doi | https://doi.org/10.1016/j.isprsjprs.2024.05.021 |
| ids.doi | https://doi.org/10.1016/j.isprsjprs.2024.05.021 |
| ids.openalex | https://openalex.org/W4399168875 |
| fwci | 7.03652557 |
| type | article |
| title | Detection and attribution of cereal yield losses using Sentinel-2 and weather data: A case study in South Australia |
| awards[0].id | https://openalex.org/G3211313373 |
| awards[0].funder_id | https://openalex.org/F4320320386 |
| awards[0].display_name | |
| awards[0].funder_award_id | CSP2002-006RTX |
| awards[0].funder_display_name | Commonwealth Scientific and Industrial Research Organisation |
| awards[1].id | https://openalex.org/G840769421 |
| awards[1].funder_id | https://openalex.org/F4320322725 |
| awards[1].display_name | |
| awards[1].funder_award_id | 202108140032 |
| awards[1].funder_display_name | China Scholarship Council |
| biblio.issue | |
| biblio.volume | 213 |
| biblio.last_page | 52 |
| biblio.first_page | 33 |
| grants[0].funder | https://openalex.org/F4320320386 |
| grants[0].award_id | CSP2002-006RTX |
| grants[0].funder_display_name | Commonwealth Scientific and Industrial Research Organisation |
| grants[1].funder | https://openalex.org/F4320320420 |
| grants[1].award_id | |
| grants[1].funder_display_name | Grains Research and Development Corporation |
| grants[2].funder | https://openalex.org/F4320321015 |
| grants[2].award_id | |
| grants[2].funder_display_name | University of Twente |
| grants[3].funder | https://openalex.org/F4320322725 |
| grants[3].award_id | 202108140032 |
| grants[3].funder_display_name | China Scholarship Council |
| topics[0].id | https://openalex.org/T10111 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9907000064849854 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Remote Sensing in Agriculture |
| topics[1].id | https://openalex.org/T12045 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9840999841690063 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Rice Cultivation and Yield Improvement |
| topics[2].id | https://openalex.org/T10616 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9822999835014343 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Smart Agriculture and AI |
| funders[0].id | https://openalex.org/F4320320386 |
| funders[0].ror | https://ror.org/03qn8fb07 |
| funders[0].display_name | Commonwealth Scientific and Industrial Research Organisation |
| funders[1].id | https://openalex.org/F4320320420 |
| funders[1].ror | https://ror.org/02xwr1996 |
| funders[1].display_name | Grains Research and Development Corporation |
| funders[2].id | https://openalex.org/F4320321015 |
| funders[2].ror | https://ror.org/006hf6230 |
| funders[2].display_name | University of Twente |
| funders[3].id | https://openalex.org/F4320322725 |
| funders[3].ror | https://ror.org/04atp4p48 |
| funders[3].display_name | China Scholarship Council |
| is_xpac | False |
| apc_list.value | 3310 |
| apc_list.currency | USD |
| apc_list.value_usd | 3310 |
| apc_paid.value | 3310 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3310 |
| concepts[0].id | https://openalex.org/C134121241 |
| concepts[0].level | 2 |
| concepts[0].score | 0.580069363117218 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q899301 |
| concepts[0].display_name | Yield (engineering) |
| concepts[1].id | https://openalex.org/C143299363 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5716015100479126 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q900584 |
| concepts[1].display_name | Attribution |
| concepts[2].id | https://openalex.org/C39432304 |
| concepts[2].level | 0 |
| concepts[2].score | 0.548436164855957 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[2].display_name | Environmental science |
| concepts[3].id | https://openalex.org/C153294291 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5150578022003174 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[3].display_name | Meteorology |
| concepts[4].id | https://openalex.org/C49204034 |
| concepts[4].level | 1 |
| concepts[4].score | 0.41965794563293457 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q52139 |
| concepts[4].display_name | Climatology |
| concepts[5].id | https://openalex.org/C2993336609 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4168052077293396 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11663 |
| concepts[5].display_name | Weather patterns |
| concepts[6].id | https://openalex.org/C62649853 |
| concepts[6].level | 1 |
| concepts[6].score | 0.37533679604530334 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[6].display_name | Remote sensing |
| concepts[7].id | https://openalex.org/C205649164 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3444322645664215 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[7].display_name | Geography |
| concepts[8].id | https://openalex.org/C100970517 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3275124430656433 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q52107 |
| concepts[8].display_name | Physical geography |
| concepts[9].id | https://openalex.org/C132651083 |
| concepts[9].level | 2 |
| concepts[9].score | 0.31859278678894043 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7942 |
| concepts[9].display_name | Climate change |
| concepts[10].id | https://openalex.org/C18903297 |
| concepts[10].level | 1 |
| concepts[10].score | 0.1501510739326477 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[10].display_name | Ecology |
| concepts[11].id | https://openalex.org/C127313418 |
| concepts[11].level | 0 |
| concepts[11].score | 0.1377227008342743 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[11].display_name | Geology |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.13542595505714417 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C15744967 |
| concepts[13].level | 0 |
| concepts[13].score | 0.09893026947975159 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[13].display_name | Psychology |
| concepts[14].id | https://openalex.org/C192562407 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[14].display_name | Materials science |
| concepts[15].id | https://openalex.org/C191897082 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11467 |
| concepts[15].display_name | Metallurgy |
| concepts[16].id | https://openalex.org/C77805123 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[16].display_name | Social psychology |
| keywords[0].id | https://openalex.org/keywords/yield |
| keywords[0].score | 0.580069363117218 |
| keywords[0].display_name | Yield (engineering) |
| keywords[1].id | https://openalex.org/keywords/attribution |
| keywords[1].score | 0.5716015100479126 |
| keywords[1].display_name | Attribution |
| keywords[2].id | https://openalex.org/keywords/environmental-science |
| keywords[2].score | 0.548436164855957 |
| keywords[2].display_name | Environmental science |
| keywords[3].id | https://openalex.org/keywords/meteorology |
| keywords[3].score | 0.5150578022003174 |
| keywords[3].display_name | Meteorology |
| keywords[4].id | https://openalex.org/keywords/climatology |
| keywords[4].score | 0.41965794563293457 |
| keywords[4].display_name | Climatology |
| keywords[5].id | https://openalex.org/keywords/weather-patterns |
| keywords[5].score | 0.4168052077293396 |
| keywords[5].display_name | Weather patterns |
| keywords[6].id | https://openalex.org/keywords/remote-sensing |
| keywords[6].score | 0.37533679604530334 |
| keywords[6].display_name | Remote sensing |
| keywords[7].id | https://openalex.org/keywords/geography |
| keywords[7].score | 0.3444322645664215 |
| keywords[7].display_name | Geography |
| keywords[8].id | https://openalex.org/keywords/physical-geography |
| keywords[8].score | 0.3275124430656433 |
| keywords[8].display_name | Physical geography |
| keywords[9].id | https://openalex.org/keywords/climate-change |
| keywords[9].score | 0.31859278678894043 |
| keywords[9].display_name | Climate change |
| keywords[10].id | https://openalex.org/keywords/ecology |
| keywords[10].score | 0.1501510739326477 |
| keywords[10].display_name | Ecology |
| keywords[11].id | https://openalex.org/keywords/geology |
| keywords[11].score | 0.1377227008342743 |
| keywords[11].display_name | Geology |
| keywords[12].id | https://openalex.org/keywords/biology |
| keywords[12].score | 0.13542595505714417 |
| keywords[12].display_name | Biology |
| keywords[13].id | https://openalex.org/keywords/psychology |
| keywords[13].score | 0.09893026947975159 |
| keywords[13].display_name | Psychology |
| language | en |
| locations[0].id | doi:10.1016/j.isprsjprs.2024.05.021 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S173339282 |
| locations[0].source.issn | 0924-2716, 1872-8235 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0924-2716 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | ISPRS Journal of Photogrammetry and Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ISPRS Journal of Photogrammetry and Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.1016/j.isprsjprs.2024.05.021 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5029315958 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-8701-1397 |
| authorships[0].author.display_name | Keke Duan |
| authorships[0].countries | NL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I94624287 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, PO Box 217, Drienerlolaan 5, 7500 AE Enschede, the Netherlands |
| authorships[0].institutions[0].id | https://openalex.org/I94624287 |
| authorships[0].institutions[0].ror | https://ror.org/006hf6230 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I94624287 |
| authorships[0].institutions[0].country_code | NL |
| authorships[0].institutions[0].display_name | University of Twente |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Keke Duan |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, PO Box 217, Drienerlolaan 5, 7500 AE Enschede, the Netherlands |
| authorships[1].author.id | https://openalex.org/A5037139982 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7979-1540 |
| authorships[1].author.display_name | Anton Vrieling |
| authorships[1].countries | NL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I94624287 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, PO Box 217, Drienerlolaan 5, 7500 AE Enschede, the Netherlands |
| authorships[1].institutions[0].id | https://openalex.org/I94624287 |
| authorships[1].institutions[0].ror | https://ror.org/006hf6230 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I94624287 |
| authorships[1].institutions[0].country_code | NL |
| authorships[1].institutions[0].display_name | University of Twente |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Anton Vrieling |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, PO Box 217, Drienerlolaan 5, 7500 AE Enschede, the Netherlands |
| authorships[2].author.id | https://openalex.org/A5040462554 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6657-6713 |
| authorships[2].author.display_name | Michael Schlund |
| authorships[2].countries | NL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I94624287 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, PO Box 217, Drienerlolaan 5, 7500 AE Enschede, the Netherlands |
| authorships[2].institutions[0].id | https://openalex.org/I94624287 |
| authorships[2].institutions[0].ror | https://ror.org/006hf6230 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I94624287 |
| authorships[2].institutions[0].country_code | NL |
| authorships[2].institutions[0].display_name | University of Twente |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Michael Schlund |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, PO Box 217, Drienerlolaan 5, 7500 AE Enschede, the Netherlands |
| authorships[3].author.id | https://openalex.org/A5034815105 |
| authorships[3].author.orcid | https://orcid.org/0009-0000-6844-5434 |
| authorships[3].author.display_name | Uday Nidumolu |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1292875679, https://openalex.org/I4210138055 |
| authorships[3].affiliations[0].raw_affiliation_string | CSIRO Agriculture and Food, Waite Campus, Gate 4, Waite Rd, Urrbrae, SA 5064, Australia |
| authorships[3].institutions[0].id | https://openalex.org/I4210138055 |
| authorships[3].institutions[0].ror | https://ror.org/03n17ds51 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1292875679, https://openalex.org/I2801453606, https://openalex.org/I4210138055, https://openalex.org/I4387156119 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | Agriculture and Food |
| authorships[3].institutions[1].id | https://openalex.org/I1292875679 |
| authorships[3].institutions[1].ror | https://ror.org/03qn8fb07 |
| authorships[3].institutions[1].type | government |
| authorships[3].institutions[1].lineage | https://openalex.org/I1292875679, https://openalex.org/I2801453606, https://openalex.org/I4387156119 |
| authorships[3].institutions[1].country_code | AU |
| authorships[3].institutions[1].display_name | Commonwealth Scientific and Industrial Research Organisation |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Uday Bhaskar Nidumolu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | CSIRO Agriculture and Food, Waite Campus, Gate 4, Waite Rd, Urrbrae, SA 5064, Australia |
| authorships[4].author.id | https://openalex.org/A5055624226 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6057-4629 |
| authorships[4].author.display_name | Christina Ratcliff |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1292875679, https://openalex.org/I4210138055 |
| authorships[4].affiliations[0].raw_affiliation_string | CSIRO Agriculture and Food, Waite Campus, Gate 4, Waite Rd, Urrbrae, SA 5064, Australia |
| authorships[4].institutions[0].id | https://openalex.org/I4210138055 |
| authorships[4].institutions[0].ror | https://ror.org/03n17ds51 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I1292875679, https://openalex.org/I2801453606, https://openalex.org/I4210138055, https://openalex.org/I4387156119 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | Agriculture and Food |
| authorships[4].institutions[1].id | https://openalex.org/I1292875679 |
| authorships[4].institutions[1].ror | https://ror.org/03qn8fb07 |
| authorships[4].institutions[1].type | government |
| authorships[4].institutions[1].lineage | https://openalex.org/I1292875679, https://openalex.org/I2801453606, https://openalex.org/I4387156119 |
| authorships[4].institutions[1].country_code | AU |
| authorships[4].institutions[1].display_name | Commonwealth Scientific and Industrial Research Organisation |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Christina Ratcliff |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | CSIRO Agriculture and Food, Waite Campus, Gate 4, Waite Rd, Urrbrae, SA 5064, Australia |
| authorships[5].author.id | https://openalex.org/A5024518484 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Simon Collings |
| authorships[5].countries | AU |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1292875679, https://openalex.org/I4210138528, https://openalex.org/I42894916 |
| authorships[5].affiliations[0].raw_affiliation_string | CSIRO Data61, AARC, 26 Dick Perry Ave, Kensington, WA 6051, Australia |
| authorships[5].institutions[0].id | https://openalex.org/I4210138528 |
| authorships[5].institutions[0].ror | https://ror.org/03rzhkf33 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I1292875679, https://openalex.org/I2801453606, https://openalex.org/I4210138528, https://openalex.org/I4387156119 |
| authorships[5].institutions[0].country_code | AU |
| authorships[5].institutions[0].display_name | Australian Resources Research Centre |
| authorships[5].institutions[1].id | https://openalex.org/I1292875679 |
| authorships[5].institutions[1].ror | https://ror.org/03qn8fb07 |
| authorships[5].institutions[1].type | government |
| authorships[5].institutions[1].lineage | https://openalex.org/I1292875679, https://openalex.org/I2801453606, https://openalex.org/I4387156119 |
| authorships[5].institutions[1].country_code | AU |
| authorships[5].institutions[1].display_name | Commonwealth Scientific and Industrial Research Organisation |
| authorships[5].institutions[2].id | https://openalex.org/I42894916 |
| authorships[5].institutions[2].ror | https://ror.org/03q397159 |
| authorships[5].institutions[2].type | other |
| authorships[5].institutions[2].lineage | https://openalex.org/I1292875679, https://openalex.org/I2801453606, https://openalex.org/I42894916, https://openalex.org/I4387156119 |
| authorships[5].institutions[2].country_code | AU |
| authorships[5].institutions[2].display_name | Data61 |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Simon Collings |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | CSIRO Data61, AARC, 26 Dick Perry Ave, Kensington, WA 6051, Australia |
| authorships[6].author.id | https://openalex.org/A5108909908 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7249-3778 |
| authorships[6].author.display_name | Andrew Nelson |
| authorships[6].countries | NL |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I94624287 |
| authorships[6].affiliations[0].raw_affiliation_string | Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, PO Box 217, Drienerlolaan 5, 7500 AE Enschede, the Netherlands |
| authorships[6].institutions[0].id | https://openalex.org/I94624287 |
| authorships[6].institutions[0].ror | https://ror.org/006hf6230 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I94624287 |
| authorships[6].institutions[0].country_code | NL |
| authorships[6].institutions[0].display_name | University of Twente |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Andrew Nelson |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, PO Box 217, Drienerlolaan 5, 7500 AE Enschede, the Netherlands |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.isprsjprs.2024.05.021 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detection and attribution of cereal yield losses using Sentinel-2 and weather data: A case study in South Australia |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10111 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9907000064849854 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Remote Sensing in Agriculture |
| related_works | https://openalex.org/W2035546108, https://openalex.org/W2376361520, https://openalex.org/W2133328864, https://openalex.org/W2093949997, https://openalex.org/W2570200690, https://openalex.org/W2389726244, https://openalex.org/W3030478661, https://openalex.org/W2323536476, https://openalex.org/W2104624653, https://openalex.org/W2128730003 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.isprsjprs.2024.05.021 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S173339282 |
| best_oa_location.source.issn | 0924-2716, 1872-8235 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0924-2716 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | ISPRS Journal of Photogrammetry and Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ISPRS Journal of Photogrammetry and Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.isprsjprs.2024.05.021 |
| primary_location.id | doi:10.1016/j.isprsjprs.2024.05.021 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S173339282 |
| primary_location.source.issn | 0924-2716, 1872-8235 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0924-2716 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | ISPRS Journal of Photogrammetry and Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ISPRS Journal of Photogrammetry and Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.1016/j.isprsjprs.2024.05.021 |
| publication_date | 2024-05-30 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2136819602, https://openalex.org/W1963519462, https://openalex.org/W2160030559, https://openalex.org/W1982028119, https://openalex.org/W6637325851, https://openalex.org/W2261059368, https://openalex.org/W2071540364, https://openalex.org/W4289792395, https://openalex.org/W6641522418, https://openalex.org/W1986072339, https://openalex.org/W3004741759, https://openalex.org/W2040731712, https://openalex.org/W2987860777, https://openalex.org/W6682020786, https://openalex.org/W2911964244, https://openalex.org/W2036908963, https://openalex.org/W2072710223, https://openalex.org/W2944794516, https://openalex.org/W2073141034, https://openalex.org/W2068138294, https://openalex.org/W2199942819, https://openalex.org/W2018636632, https://openalex.org/W2897285410, https://openalex.org/W6604111847, https://openalex.org/W2082068663, https://openalex.org/W2025821688, https://openalex.org/W2038166563, https://openalex.org/W2955347455, https://openalex.org/W1999912668, https://openalex.org/W4213337917, https://openalex.org/W2062888356, https://openalex.org/W2127821758, https://openalex.org/W3194056094, https://openalex.org/W1974246370, https://openalex.org/W1968496754, https://openalex.org/W1978617972, https://openalex.org/W3175044012, https://openalex.org/W2044863747, https://openalex.org/W2969758983, https://openalex.org/W6768601724, https://openalex.org/W6949202615, https://openalex.org/W1998997260, https://openalex.org/W2971456001, https://openalex.org/W2093275097, https://openalex.org/W2416782259, https://openalex.org/W2094677081, https://openalex.org/W1987415163, https://openalex.org/W2158883105, https://openalex.org/W3012975023, https://openalex.org/W2124791638, https://openalex.org/W2019840454, https://openalex.org/W6771418917, https://openalex.org/W2120679679, https://openalex.org/W1569716231, https://openalex.org/W2320491855, https://openalex.org/W1512871475, https://openalex.org/W2809305579, https://openalex.org/W1981122222, https://openalex.org/W2025382376, https://openalex.org/W2589015861, https://openalex.org/W1988269748, https://openalex.org/W3162068967, https://openalex.org/W6683063705, https://openalex.org/W1997230958, https://openalex.org/W1970004911, https://openalex.org/W2905515121, https://openalex.org/W1970672417, https://openalex.org/W2141102916, https://openalex.org/W2034672914, https://openalex.org/W4360600797, https://openalex.org/W6810122032, https://openalex.org/W2133213926, https://openalex.org/W7018294876, https://openalex.org/W2154506590, https://openalex.org/W2984811207, https://openalex.org/W2099877015, https://openalex.org/W3159220065, https://openalex.org/W4385260463, https://openalex.org/W1982724915, https://openalex.org/W2793718156, https://openalex.org/W1485736520, https://openalex.org/W2793935644, https://openalex.org/W2146501057, https://openalex.org/W1982487747, https://openalex.org/W2123699526, https://openalex.org/W4296234905, https://openalex.org/W1997906015, https://openalex.org/W2024468030, https://openalex.org/W2075844317, https://openalex.org/W2324376194, https://openalex.org/W2330458283, https://openalex.org/W1827486117, https://openalex.org/W1987342501, https://openalex.org/W2112092738, https://openalex.org/W2053596403, https://openalex.org/W1985914850, https://openalex.org/W1967417918, https://openalex.org/W1968883408, https://openalex.org/W3079760979, https://openalex.org/W2927413391, https://openalex.org/W2001448697, https://openalex.org/W3082255448, https://openalex.org/W3029014910, https://openalex.org/W2983376237, https://openalex.org/W2808287349, https://openalex.org/W4389978653, https://openalex.org/W2344866513, https://openalex.org/W4310060208, https://openalex.org/W2125495180, https://openalex.org/W4280504002, https://openalex.org/W2729777092, https://openalex.org/W2149915203, https://openalex.org/W101505578, https://openalex.org/W4244581014, https://openalex.org/W1661729881, https://openalex.org/W2153179024, https://openalex.org/W2978632040, https://openalex.org/W2334988231, https://openalex.org/W290663736 |
| referenced_works_count | 119 |
| abstract_inverted_index.a | 27, 53, 81, 264 |
| abstract_inverted_index.R2 | 217 |
| abstract_inverted_index.To | 46, 70 |
| abstract_inverted_index.We | 25, 112, 157 |
| abstract_inverted_index.an | 216 |
| abstract_inverted_index.as | 106 |
| abstract_inverted_index.at | 36, 257 |
| abstract_inverted_index.be | 206 |
| abstract_inverted_index.by | 128 |
| abstract_inverted_index.in | 61, 134, 176, 191, 279 |
| abstract_inverted_index.of | 116, 131, 162, 169, 180, 194, 218, 230, 241, 244, 253, 269 |
| abstract_inverted_index.on | 57, 200 |
| abstract_inverted_index.to | 9, 18, 31, 43, 68, 123, 276, 285 |
| abstract_inverted_index.we | 51, 79, 141 |
| abstract_inverted_index.CDI | 118, 135, 231 |
| abstract_inverted_index.The | 94, 260 |
| abstract_inverted_index.and | 13, 40, 99, 222, 233, 272 |
| abstract_inverted_index.can | 7 |
| abstract_inverted_index.due | 17 |
| abstract_inverted_index.for | 152, 220, 224, 238, 266 |
| abstract_inverted_index.of) | 145 |
| abstract_inverted_index.our | 48 |
| abstract_inverted_index.the | 37, 76, 97, 107, 114, 117, 153, 160, 166, 177, 227, 250, 274 |
| abstract_inverted_index.two | 211 |
| abstract_inverted_index.use | 161 |
| abstract_inverted_index.was | 104 |
| abstract_inverted_index.0.83 | 219 |
| abstract_inverted_index.0.91 | 223 |
| abstract_inverted_index.2017 | 67 |
| abstract_inverted_index.Crop | 108 |
| abstract_inverted_index.EVI2 | 101, 170, 187 |
| abstract_inverted_index.also | 248 |
| abstract_inverted_index.case | 55 |
| abstract_inverted_index.crop | 3, 11, 72, 183, 245, 254, 270, 288 |
| abstract_inverted_index.data | 65 |
| abstract_inverted_index.from | 66, 89 |
| abstract_inverted_index.help | 8, 284 |
| abstract_inverted_index.lost | 15 |
| abstract_inverted_index.near | 280 |
| abstract_inverted_index.over | 21 |
| abstract_inverted_index.than | 197 |
| abstract_inverted_index.that | 159 |
| abstract_inverted_index.time | 87, 102, 164, 171, 188 |
| abstract_inverted_index.were | 149 |
| abstract_inverted_index.with | 91, 136, 215 |
| abstract_inverted_index.2022. | 69 |
| abstract_inverted_index.Index | 85, 110 |
| abstract_inverted_index.South | 62 |
| abstract_inverted_index.Yield | 203 |
| abstract_inverted_index.adopt | 286 |
| abstract_inverted_index.based | 199 |
| abstract_inverted_index.basis | 265 |
| abstract_inverted_index.could | 205 |
| abstract_inverted_index.early | 267 |
| abstract_inverted_index.found | 158 |
| abstract_inverted_index.large | 22 |
| abstract_inverted_index.level | 39 |
| abstract_inverted_index.loss. | 126 |
| abstract_inverted_index.novel | 28 |
| abstract_inverted_index.study | 56 |
| abstract_inverted_index.these | 42 |
| abstract_inverted_index.those | 198 |
| abstract_inverted_index.time. | 93 |
| abstract_inverted_index.using | 64 |
| abstract_inverted_index.wheat | 221 |
| abstract_inverted_index.which | 143, 247, 282 |
| abstract_inverted_index.yield | 16, 34, 125, 155, 195 |
| abstract_inverted_index.(CDI). | 111 |
| abstract_inverted_index.(EVI2) | 86 |
| abstract_inverted_index.Damage | 109 |
| abstract_inverted_index.Remote | 5 |
| abstract_inverted_index.affect | 2 |
| abstract_inverted_index.assess | 47 |
| abstract_inverted_index.before | 208, 213 |
| abstract_inverted_index.better | 192 |
| abstract_inverted_index.causes | 243 |
| abstract_inverted_index.cereal | 59 |
| abstract_inverted_index.curves | 232 |
| abstract_inverted_index.damage | 12, 255, 271, 275 |
| abstract_inverted_index.dates. | 202 |
| abstract_inverted_index.detect | 10, 71 |
| abstract_inverted_index.events | 148 |
| abstract_inverted_index.growth | 73, 184 |
| abstract_inverted_index.level. | 259 |
| abstract_inverted_index.likely | 150 |
| abstract_inverted_index.losses | 35 |
| abstract_inverted_index.method | 30 |
| abstract_inverted_index.months | 212 |
| abstract_inverted_index.series | 88, 103, 172, 189 |
| abstract_inverted_index.should | 283 |
| abstract_inverted_index.timely | 239 |
| abstract_inverted_index.winter | 58 |
| abstract_inverted_index.within | 119 |
| abstract_inverted_index.years, | 174 |
| abstract_inverted_index.Weather | 0 |
| abstract_inverted_index.aligned | 80 |
| abstract_inverted_index.allowed | 237 |
| abstract_inverted_index.barley. | 225 |
| abstract_inverted_index.between | 96, 173 |
| abstract_inverted_index.curves. | 185 |
| abstract_inverted_index.damage, | 246 |
| abstract_inverted_index.defined | 105 |
| abstract_inverted_index.extreme | 138, 146, 234 |
| abstract_inverted_index.growing | 77 |
| abstract_inverted_index.indices | 236 |
| abstract_inverted_index.predict | 32, 124 |
| abstract_inverted_index.propose | 26 |
| abstract_inverted_index.season, | 78 |
| abstract_inverted_index.sensing | 6 |
| abstract_inverted_index.spatial | 23, 251 |
| abstract_inverted_index.thermal | 92, 163 |
| abstract_inverted_index.typical | 181 |
| abstract_inverted_index.warning | 268 |
| abstract_inverted_index.weather | 19, 44, 139, 147, 235, 277 |
| abstract_inverted_index.windows | 122 |
| abstract_inverted_index.Enhanced | 83 |
| abstract_inverted_index.Finally, | 127, 226 |
| abstract_inverted_index.analysis | 229 |
| abstract_inverted_index.assessed | 113 |
| abstract_inverted_index.calendar | 201 |
| abstract_inverted_index.captured | 249 |
| abstract_inverted_index.combined | 228 |
| abstract_inverted_index.estimate | 14 |
| abstract_inverted_index.expected | 98 |
| abstract_inverted_index.explored | 142 |
| abstract_inverted_index.extents. | 24 |
| abstract_inverted_index.extremes | 1, 20, 278 |
| abstract_inverted_index.harvest) | 214 |
| abstract_inverted_index.increase | 133 |
| abstract_inverted_index.method's | 49 |
| abstract_inverted_index.observed | 100 |
| abstract_inverted_index.paddocks | 60 |
| abstract_inverted_index.proposed | 261 |
| abstract_inverted_index.provides | 263 |
| abstract_inverted_index.resulted | 190 |
| abstract_inverted_index.scalable | 29 |
| abstract_inverted_index.specific | 120 |
| abstract_inverted_index.temporal | 167 |
| abstract_inverted_index.two-band | 82 |
| abstract_inverted_index.Australia | 63 |
| abstract_inverted_index.anomalies | 74 |
| abstract_inverted_index.attribute | 41 |
| abstract_inverted_index.comparing | 129 |
| abstract_inverted_index.conducted | 52 |
| abstract_inverted_index.detection | 240 |
| abstract_inverted_index.deviation | 95, 168 |
| abstract_inverted_index.different | 137 |
| abstract_inverted_index.effective | 178 |
| abstract_inverted_index.extremes. | 45 |
| abstract_inverted_index.framework | 262 |
| abstract_inverted_index.in-season | 33 |
| abstract_inverted_index.instances | 130 |
| abstract_inverted_index.predicted | 207 |
| abstract_inverted_index.reduction | 196, 204 |
| abstract_inverted_index.resulting | 175 |
| abstract_inverted_index.sub-field | 38, 258 |
| abstract_inverted_index.Sentinel-2 | 90 |
| abstract_inverted_index.Vegetation | 84 |
| abstract_inverted_index.diminished | 165 |
| abstract_inverted_index.potential, | 50 |
| abstract_inverted_index.prediction | 193 |
| abstract_inverted_index.protection | 289 |
| abstract_inverted_index.real-time, | 281 |
| abstract_inverted_index.reduction. | 156 |
| abstract_inverted_index.throughout | 75 |
| abstract_inverted_index.variations | 252 |
| abstract_inverted_index.appropriate | 287 |
| abstract_inverted_index.attributing | 273 |
| abstract_inverted_index.attribution | 256 |
| abstract_inverted_index.experienced | 154 |
| abstract_inverted_index.indicators, | 140 |
| abstract_inverted_index.performance | 115 |
| abstract_inverted_index.production. | 4 |
| abstract_inverted_index.responsible | 151 |
| abstract_inverted_index.strategies. | 290 |
| abstract_inverted_index.stress-free | 182 |
| abstract_inverted_index.substantial | 132 |
| abstract_inverted_index.construction | 179 |
| abstract_inverted_index.phenological | 121 |
| abstract_inverted_index.(combinations | 144 |
| abstract_inverted_index.grain-filling | 209 |
| abstract_inverted_index.(approximately | 210 |
| abstract_inverted_index.weather-related | 242 |
| abstract_inverted_index.proof-of-concept | 54 |
| abstract_inverted_index.Thermal-time-based | 186 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5029315958 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I94624287 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.5699999928474426 |
| sustainable_development_goals[0].display_name | Zero hunger |
| sustainable_development_goals[1].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[1].score | 0.5299999713897705 |
| sustainable_development_goals[1].display_name | Climate action |
| citation_normalized_percentile.value | 0.94557317 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |