Detection and classification of long terminal repeat sequences in plant LTR-retrotransposons and their analysis using explainable machine learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1101/2024.06.11.598549
Background Long terminal repeats (LTRs) represent important parts of LTR retrotransposons and retroviruses found in high copy numbers in a majority of eukaryotic genomes. LTRs contain regulatory sequences essential for the life cycle of the retrotransposon. Previous experimental and sequence studies have provided only limited information about LTR structure and composition, mostly from model systems. To enhance our understanding of these key compounds, we focused on the contrasts between LTRs of various retrotransposon families and other genomic regions. Furthermore, this approach can be utilized for the classification and prediction of LTRs. Results We used machine learning methods suitable for DNA sequence classification and applied them to a large dataset of plant LTR retrotransposon sequences. We trained three machine learning models using (i) traditional model ensembles (Gradient Boosting - GBC), (ii) hybrid CNN-LSTM models, and (iii) a pre-trained transformer-based model (DNABERT) using k-mer sequence representation. All three approaches were successful in classifying and isolating LTRs in this data, as well as providing valuable insights into LTR sequence composition. The best classification (expressed as F1 score) achieved for LTR detection was 0.85 using the CNN-LSTM hybrid network model. The most accurate classification task was superfamily classification (F1=0.89) while the least accurate was family classification (F1=0.74). The trained models were subjected to explainability analysis. SHAP positional analysis identified a mixture of interesting features, many of which had a preferred absolute position within the LTR and/or were biologically relevant, such as a centrally positioned TATA-box, and TG..CA patterns around both LTR edges. Conclusions Our results show that the models used here recognized biologically relevant motifs, such as core promoter elements in the LTR detection task, and a development and stress-related subclass of transcription factor binding sites in the family classification task. Explainability analysis also highlighted the importance of 5’- and 3’-edges in LTR identity and revealed need to analyze more than just dinucleotides at these ends. Our work shows the applicability of machine learning models to regulatory sequence analysis and classification, and demonstrates the important role of the identified motifs in LTR detection.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2024.06.11.598549
- https://www.biorxiv.org/content/biorxiv/early/2024/06/14/2024.06.11.598549.full.pdf
- OA Status
- green
- Cited By
- 1
- References
- 80
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399709512
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399709512Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2024.06.11.598549Digital Object Identifier
- Title
-
Detection and classification of long terminal repeat sequences in plant LTR-retrotransposons and their analysis using explainable machine learningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-14Full publication date if available
- Authors
-
Jakub Horvath, Pavel Jedlička, Marie Krátká, Zdeněk Kubát, Eduard Kejnovský, Matej LexaList of authors in order
- Landing page
-
https://doi.org/10.1101/2024.06.11.598549Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2024/06/14/2024.06.11.598549.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2024/06/14/2024.06.11.598549.full.pdfDirect OA link when available
- Concepts
-
Retrotransposon, Long terminal repeat, Artificial intelligence, Computational biology, Genome, Biology, Computer science, Machine learning, Random forest, Genetics, Gene, Transposable elementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
80Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399709512 |
|---|---|
| doi | https://doi.org/10.1101/2024.06.11.598549 |
| ids.doi | https://doi.org/10.1101/2024.06.11.598549 |
| ids.openalex | https://openalex.org/W4399709512 |
| fwci | 0.78204908 |
| type | preprint |
| title | Detection and classification of long terminal repeat sequences in plant LTR-retrotransposons and their analysis using explainable machine learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10434 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Chromosomal and Genetic Variations |
| topics[1].id | https://openalex.org/T10015 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9984999895095825 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Genomics and Phylogenetic Studies |
| topics[2].id | https://openalex.org/T10521 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9940000176429749 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | RNA and protein synthesis mechanisms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C7029365 |
| concepts[0].level | 5 |
| concepts[0].score | 0.8622059226036072 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q413988 |
| concepts[0].display_name | Retrotransposon |
| concepts[1].id | https://openalex.org/C199491388 |
| concepts[1].level | 4 |
| concepts[1].score | 0.8489154577255249 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1869477 |
| concepts[1].display_name | Long terminal repeat |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5362856388092041 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C70721500 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5341789722442627 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[3].display_name | Computational biology |
| concepts[4].id | https://openalex.org/C141231307 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4335029423236847 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7020 |
| concepts[4].display_name | Genome |
| concepts[5].id | https://openalex.org/C86803240 |
| concepts[5].level | 0 |
| concepts[5].score | 0.43149715662002563 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[5].display_name | Biology |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.43124592304229736 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.42348456382751465 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C169258074 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4230075776576996 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[8].display_name | Random forest |
| concepts[9].id | https://openalex.org/C54355233 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3209626078605652 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[9].display_name | Genetics |
| concepts[10].id | https://openalex.org/C104317684 |
| concepts[10].level | 2 |
| concepts[10].score | 0.1816035807132721 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[10].display_name | Gene |
| concepts[11].id | https://openalex.org/C4918238 |
| concepts[11].level | 4 |
| concepts[11].score | 0.10123029351234436 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q121438 |
| concepts[11].display_name | Transposable element |
| keywords[0].id | https://openalex.org/keywords/retrotransposon |
| keywords[0].score | 0.8622059226036072 |
| keywords[0].display_name | Retrotransposon |
| keywords[1].id | https://openalex.org/keywords/long-terminal-repeat |
| keywords[1].score | 0.8489154577255249 |
| keywords[1].display_name | Long terminal repeat |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5362856388092041 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computational-biology |
| keywords[3].score | 0.5341789722442627 |
| keywords[3].display_name | Computational biology |
| keywords[4].id | https://openalex.org/keywords/genome |
| keywords[4].score | 0.4335029423236847 |
| keywords[4].display_name | Genome |
| keywords[5].id | https://openalex.org/keywords/biology |
| keywords[5].score | 0.43149715662002563 |
| keywords[5].display_name | Biology |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.43124592304229736 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.42348456382751465 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/random-forest |
| keywords[8].score | 0.4230075776576996 |
| keywords[8].display_name | Random forest |
| keywords[9].id | https://openalex.org/keywords/genetics |
| keywords[9].score | 0.3209626078605652 |
| keywords[9].display_name | Genetics |
| keywords[10].id | https://openalex.org/keywords/gene |
| keywords[10].score | 0.1816035807132721 |
| keywords[10].display_name | Gene |
| keywords[11].id | https://openalex.org/keywords/transposable-element |
| keywords[11].score | 0.10123029351234436 |
| keywords[11].display_name | Transposable element |
| language | en |
| locations[0].id | doi:10.1101/2024.06.11.598549 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2024/06/14/2024.06.11.598549.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2024.06.11.598549 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101380036 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jakub Horvath |
| authorships[0].countries | CZ |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I21449261 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Informatics, Masaryk University, Botanicka 68a, 60200 Brno, Czech Republic |
| authorships[0].institutions[0].id | https://openalex.org/I21449261 |
| authorships[0].institutions[0].ror | https://ror.org/02j46qs45 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I21449261 |
| authorships[0].institutions[0].country_code | CZ |
| authorships[0].institutions[0].display_name | Masaryk University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jakub Horvath |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Faculty of Informatics, Masaryk University, Botanicka 68a, 60200 Brno, Czech Republic |
| authorships[1].author.id | https://openalex.org/A5029393283 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9324-5151 |
| authorships[1].author.display_name | Pavel Jedlička |
| authorships[1].countries | CZ |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210089928 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 6100 Brno, Czech Republic |
| authorships[1].institutions[0].id | https://openalex.org/I4210089928 |
| authorships[1].institutions[0].ror | https://ror.org/00angvn73 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I202391551, https://openalex.org/I4210089928 |
| authorships[1].institutions[0].country_code | CZ |
| authorships[1].institutions[0].display_name | Czech Academy of Sciences, Institute of Biophysics |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pavel Jedlicka |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 6100 Brno, Czech Republic |
| authorships[2].author.id | https://openalex.org/A5102926864 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5828-382X |
| authorships[2].author.display_name | Marie Krátká |
| authorships[2].countries | CZ |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I21449261 |
| authorships[2].affiliations[0].raw_affiliation_string | National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210089928 |
| authorships[2].affiliations[1].raw_affiliation_string | Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 6100 Brno, Czech Republic |
| authorships[2].institutions[0].id | https://openalex.org/I4210089928 |
| authorships[2].institutions[0].ror | https://ror.org/00angvn73 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I202391551, https://openalex.org/I4210089928 |
| authorships[2].institutions[0].country_code | CZ |
| authorships[2].institutions[0].display_name | Czech Academy of Sciences, Institute of Biophysics |
| authorships[2].institutions[1].id | https://openalex.org/I21449261 |
| authorships[2].institutions[1].ror | https://ror.org/02j46qs45 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I21449261 |
| authorships[2].institutions[1].country_code | CZ |
| authorships[2].institutions[1].display_name | Masaryk University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Marie Kratka |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 6100 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic |
| authorships[3].author.id | https://openalex.org/A5069132186 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8278-9495 |
| authorships[3].author.display_name | Zdeněk Kubát |
| authorships[3].countries | CZ |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210089928 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 6100 Brno, Czech Republic |
| authorships[3].institutions[0].id | https://openalex.org/I4210089928 |
| authorships[3].institutions[0].ror | https://ror.org/00angvn73 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I202391551, https://openalex.org/I4210089928 |
| authorships[3].institutions[0].country_code | CZ |
| authorships[3].institutions[0].display_name | Czech Academy of Sciences, Institute of Biophysics |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zdenek Kubat |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 6100 Brno, Czech Republic |
| authorships[4].author.id | https://openalex.org/A5056103583 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5401-6655 |
| authorships[4].author.display_name | Eduard Kejnovský |
| authorships[4].countries | CZ |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210089928 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 6100 Brno, Czech Republic |
| authorships[4].institutions[0].id | https://openalex.org/I4210089928 |
| authorships[4].institutions[0].ror | https://ror.org/00angvn73 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I202391551, https://openalex.org/I4210089928 |
| authorships[4].institutions[0].country_code | CZ |
| authorships[4].institutions[0].display_name | Czech Academy of Sciences, Institute of Biophysics |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Eduard Kejnovsky |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 6100 Brno, Czech Republic |
| authorships[5].author.id | https://openalex.org/A5082104022 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4213-5259 |
| authorships[5].author.display_name | Matej Lexa |
| authorships[5].countries | CZ |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I21449261 |
| authorships[5].affiliations[0].raw_affiliation_string | Faculty of Informatics, Masaryk University, Botanicka 68a, 60200 Brno, Czech Republic |
| authorships[5].institutions[0].id | https://openalex.org/I21449261 |
| authorships[5].institutions[0].ror | https://ror.org/02j46qs45 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I21449261 |
| authorships[5].institutions[0].country_code | CZ |
| authorships[5].institutions[0].display_name | Masaryk University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Matej Lexa |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Faculty of Informatics, Masaryk University, Botanicka 68a, 60200 Brno, Czech Republic |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2024/06/14/2024.06.11.598549.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detection and classification of long terminal repeat sequences in plant LTR-retrotransposons and their analysis using explainable machine learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10434 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Chromosomal and Genetic Variations |
| related_works | https://openalex.org/W113856995, https://openalex.org/W3145616024, https://openalex.org/W2054036000, https://openalex.org/W2004644512, https://openalex.org/W2402665505, https://openalex.org/W2064967612, https://openalex.org/W2375807013, https://openalex.org/W2019364734, https://openalex.org/W2137282308, https://openalex.org/W2094923272 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2024.06.11.598549 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2024/06/14/2024.06.11.598549.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2024.06.11.598549 |
| primary_location.id | doi:10.1101/2024.06.11.598549 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2024/06/14/2024.06.11.598549.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2024.06.11.598549 |
| publication_date | 2024-06-14 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2132141594, https://openalex.org/W4288421316, https://openalex.org/W2746281072, https://openalex.org/W2012411101, https://openalex.org/W1709815505, https://openalex.org/W2162531367, https://openalex.org/W2137455182, https://openalex.org/W2112113923, https://openalex.org/W2153884998, https://openalex.org/W3215596355, https://openalex.org/W2079911234, https://openalex.org/W2088062177, https://openalex.org/W4391380208, https://openalex.org/W2114850508, https://openalex.org/W2024382705, https://openalex.org/W2947464213, https://openalex.org/W4388773681, https://openalex.org/W4206197042, https://openalex.org/W2896457183, https://openalex.org/W2969569143, https://openalex.org/W2146641337, https://openalex.org/W2148920171, https://openalex.org/W3107093442, https://openalex.org/W2130824167, https://openalex.org/W4385977714, https://openalex.org/W2050989396, https://openalex.org/W3185619636, https://openalex.org/W2103777723, https://openalex.org/W3121091727, https://openalex.org/W2765675521, https://openalex.org/W2064675550, https://openalex.org/W760758862, https://openalex.org/W2008444888, https://openalex.org/W4289690778, https://openalex.org/W1978683904, https://openalex.org/W3027536938, https://openalex.org/W3083938001, https://openalex.org/W3127238141, https://openalex.org/W2096998165, https://openalex.org/W3177828909, https://openalex.org/W1745115363, https://openalex.org/W4372332501, https://openalex.org/W2995175313, https://openalex.org/W4323310642, https://openalex.org/W2136711690, https://openalex.org/W2156125289, https://openalex.org/W3159707412, https://openalex.org/W2088998472, https://openalex.org/W2999615587, https://openalex.org/W2618851150, https://openalex.org/W4206759387, https://openalex.org/W2056573937, https://openalex.org/W4213009331, https://openalex.org/W3001552569, https://openalex.org/W2131371937, https://openalex.org/W2966951649, https://openalex.org/W2735332739, https://openalex.org/W4285041473, https://openalex.org/W3162530389, https://openalex.org/W2101234009, https://openalex.org/W4309765755, https://openalex.org/W3037070433, https://openalex.org/W3048919783, https://openalex.org/W2341539131, https://openalex.org/W2044101583, https://openalex.org/W4220685469, https://openalex.org/W2800198679, https://openalex.org/W2578051997, https://openalex.org/W2293968912, https://openalex.org/W2103371772, https://openalex.org/W3216912213, https://openalex.org/W2410616080, https://openalex.org/W2055992143, https://openalex.org/W2122263911, https://openalex.org/W2059864757, https://openalex.org/W2979826702, https://openalex.org/W3025472913, https://openalex.org/W4390542559, https://openalex.org/W2033898946, https://openalex.org/W3180664812 |
| referenced_works_count | 80 |
| abstract_inverted_index.- | 128 |
| abstract_inverted_index.a | 20, 107, 136, 216, 225, 238, 273 |
| abstract_inverted_index.F1 | 173 |
| abstract_inverted_index.To | 56 |
| abstract_inverted_index.We | 93, 115 |
| abstract_inverted_index.as | 158, 160, 172, 237, 263 |
| abstract_inverted_index.at | 310 |
| abstract_inverted_index.be | 83 |
| abstract_inverted_index.in | 15, 19, 150, 155, 267, 283, 298, 337 |
| abstract_inverted_index.of | 9, 22, 34, 60, 71, 90, 110, 218, 222, 278, 294, 318, 333 |
| abstract_inverted_index.on | 66 |
| abstract_inverted_index.to | 106, 209, 304, 322 |
| abstract_inverted_index.we | 64 |
| abstract_inverted_index.(i) | 122 |
| abstract_inverted_index.All | 145 |
| abstract_inverted_index.DNA | 100 |
| abstract_inverted_index.LTR | 10, 48, 112, 165, 177, 231, 247, 269, 299, 338 |
| abstract_inverted_index.Our | 250, 313 |
| abstract_inverted_index.The | 168, 187, 204 |
| abstract_inverted_index.and | 12, 39, 50, 75, 88, 103, 134, 152, 242, 272, 275, 296, 301, 326, 328 |
| abstract_inverted_index.can | 82 |
| abstract_inverted_index.for | 30, 85, 99, 176 |
| abstract_inverted_index.had | 224 |
| abstract_inverted_index.key | 62 |
| abstract_inverted_index.our | 58 |
| abstract_inverted_index.the | 31, 35, 67, 86, 182, 197, 230, 254, 268, 284, 292, 316, 330, 334 |
| abstract_inverted_index.was | 179, 192, 200 |
| abstract_inverted_index.(ii) | 130 |
| abstract_inverted_index.0.85 | 180 |
| abstract_inverted_index.LTRs | 25, 70, 154 |
| abstract_inverted_index.Long | 2 |
| abstract_inverted_index.SHAP | 212 |
| abstract_inverted_index.also | 290 |
| abstract_inverted_index.best | 169 |
| abstract_inverted_index.both | 246 |
| abstract_inverted_index.copy | 17 |
| abstract_inverted_index.core | 264 |
| abstract_inverted_index.from | 53 |
| abstract_inverted_index.have | 42 |
| abstract_inverted_index.here | 257 |
| abstract_inverted_index.high | 16 |
| abstract_inverted_index.into | 164 |
| abstract_inverted_index.just | 308 |
| abstract_inverted_index.life | 32 |
| abstract_inverted_index.many | 221 |
| abstract_inverted_index.more | 306 |
| abstract_inverted_index.most | 188 |
| abstract_inverted_index.need | 303 |
| abstract_inverted_index.only | 44 |
| abstract_inverted_index.role | 332 |
| abstract_inverted_index.show | 252 |
| abstract_inverted_index.such | 236, 262 |
| abstract_inverted_index.task | 191 |
| abstract_inverted_index.than | 307 |
| abstract_inverted_index.that | 253 |
| abstract_inverted_index.them | 105 |
| abstract_inverted_index.this | 80, 156 |
| abstract_inverted_index.used | 94, 256 |
| abstract_inverted_index.well | 159 |
| abstract_inverted_index.were | 148, 207, 233 |
| abstract_inverted_index.work | 314 |
| abstract_inverted_index.(iii) | 135 |
| abstract_inverted_index.5’- | 295 |
| abstract_inverted_index.GBC), | 129 |
| abstract_inverted_index.LTRs. | 91 |
| abstract_inverted_index.about | 47 |
| abstract_inverted_index.cycle | 33 |
| abstract_inverted_index.data, | 157 |
| abstract_inverted_index.ends. | 312 |
| abstract_inverted_index.found | 14 |
| abstract_inverted_index.k-mer | 142 |
| abstract_inverted_index.large | 108 |
| abstract_inverted_index.least | 198 |
| abstract_inverted_index.model | 54, 124, 139 |
| abstract_inverted_index.other | 76 |
| abstract_inverted_index.parts | 8 |
| abstract_inverted_index.plant | 111 |
| abstract_inverted_index.shows | 315 |
| abstract_inverted_index.sites | 282 |
| abstract_inverted_index.task, | 271 |
| abstract_inverted_index.task. | 287 |
| abstract_inverted_index.these | 61, 311 |
| abstract_inverted_index.three | 117, 146 |
| abstract_inverted_index.using | 121, 141, 181 |
| abstract_inverted_index.which | 223 |
| abstract_inverted_index.while | 196 |
| abstract_inverted_index.(LTRs) | 5 |
| abstract_inverted_index.TG..CA | 243 |
| abstract_inverted_index.and/or | 232 |
| abstract_inverted_index.around | 245 |
| abstract_inverted_index.edges. | 248 |
| abstract_inverted_index.factor | 280 |
| abstract_inverted_index.family | 201, 285 |
| abstract_inverted_index.hybrid | 131, 184 |
| abstract_inverted_index.model. | 186 |
| abstract_inverted_index.models | 120, 206, 255, 321 |
| abstract_inverted_index.mostly | 52 |
| abstract_inverted_index.motifs | 336 |
| abstract_inverted_index.score) | 174 |
| abstract_inverted_index.within | 229 |
| abstract_inverted_index.Results | 92 |
| abstract_inverted_index.analyze | 305 |
| abstract_inverted_index.applied | 104 |
| abstract_inverted_index.between | 69 |
| abstract_inverted_index.binding | 281 |
| abstract_inverted_index.contain | 26 |
| abstract_inverted_index.dataset | 109 |
| abstract_inverted_index.enhance | 57 |
| abstract_inverted_index.focused | 65 |
| abstract_inverted_index.genomic | 77 |
| abstract_inverted_index.limited | 45 |
| abstract_inverted_index.machine | 95, 118, 319 |
| abstract_inverted_index.methods | 97 |
| abstract_inverted_index.mixture | 217 |
| abstract_inverted_index.models, | 133 |
| abstract_inverted_index.motifs, | 261 |
| abstract_inverted_index.network | 185 |
| abstract_inverted_index.numbers | 18 |
| abstract_inverted_index.repeats | 4 |
| abstract_inverted_index.results | 251 |
| abstract_inverted_index.studies | 41 |
| abstract_inverted_index.trained | 116, 205 |
| abstract_inverted_index.various | 72 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Boosting | 127 |
| abstract_inverted_index.CNN-LSTM | 132, 183 |
| abstract_inverted_index.Previous | 37 |
| abstract_inverted_index.absolute | 227 |
| abstract_inverted_index.accurate | 189, 199 |
| abstract_inverted_index.achieved | 175 |
| abstract_inverted_index.analysis | 214, 289, 325 |
| abstract_inverted_index.approach | 81 |
| abstract_inverted_index.elements | 266 |
| abstract_inverted_index.families | 74 |
| abstract_inverted_index.genomes. | 24 |
| abstract_inverted_index.identity | 300 |
| abstract_inverted_index.insights | 163 |
| abstract_inverted_index.learning | 96, 119, 320 |
| abstract_inverted_index.majority | 21 |
| abstract_inverted_index.patterns | 244 |
| abstract_inverted_index.position | 228 |
| abstract_inverted_index.promoter | 265 |
| abstract_inverted_index.provided | 43 |
| abstract_inverted_index.regions. | 78 |
| abstract_inverted_index.relevant | 260 |
| abstract_inverted_index.revealed | 302 |
| abstract_inverted_index.sequence | 40, 101, 143, 166, 324 |
| abstract_inverted_index.subclass | 277 |
| abstract_inverted_index.suitable | 98 |
| abstract_inverted_index.systems. | 55 |
| abstract_inverted_index.terminal | 3 |
| abstract_inverted_index.utilized | 84 |
| abstract_inverted_index.valuable | 162 |
| abstract_inverted_index.(DNABERT) | 140 |
| abstract_inverted_index.(F1=0.89) | 195 |
| abstract_inverted_index.(Gradient | 126 |
| abstract_inverted_index.TATA-box, | 241 |
| abstract_inverted_index.analysis. | 211 |
| abstract_inverted_index.centrally | 239 |
| abstract_inverted_index.contrasts | 68 |
| abstract_inverted_index.detection | 178, 270 |
| abstract_inverted_index.ensembles | 125 |
| abstract_inverted_index.essential | 29 |
| abstract_inverted_index.features, | 220 |
| abstract_inverted_index.important | 7, 331 |
| abstract_inverted_index.isolating | 153 |
| abstract_inverted_index.preferred | 226 |
| abstract_inverted_index.providing | 161 |
| abstract_inverted_index.relevant, | 235 |
| abstract_inverted_index.represent | 6 |
| abstract_inverted_index.sequences | 28 |
| abstract_inverted_index.structure | 49 |
| abstract_inverted_index.subjected | 208 |
| abstract_inverted_index.(F1=0.74). | 203 |
| abstract_inverted_index.(expressed | 171 |
| abstract_inverted_index.3’-edges | 297 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.approaches | 147 |
| abstract_inverted_index.compounds, | 63 |
| abstract_inverted_index.detection. | 339 |
| abstract_inverted_index.eukaryotic | 23 |
| abstract_inverted_index.identified | 215, 335 |
| abstract_inverted_index.importance | 293 |
| abstract_inverted_index.positional | 213 |
| abstract_inverted_index.positioned | 240 |
| abstract_inverted_index.prediction | 89 |
| abstract_inverted_index.recognized | 258 |
| abstract_inverted_index.regulatory | 27, 323 |
| abstract_inverted_index.sequences. | 114 |
| abstract_inverted_index.successful | 149 |
| abstract_inverted_index.Conclusions | 249 |
| abstract_inverted_index.classifying | 151 |
| abstract_inverted_index.development | 274 |
| abstract_inverted_index.highlighted | 291 |
| abstract_inverted_index.information | 46 |
| abstract_inverted_index.interesting | 219 |
| abstract_inverted_index.pre-trained | 137 |
| abstract_inverted_index.superfamily | 193 |
| abstract_inverted_index.traditional | 123 |
| abstract_inverted_index.Furthermore, | 79 |
| abstract_inverted_index.biologically | 234, 259 |
| abstract_inverted_index.composition, | 51 |
| abstract_inverted_index.composition. | 167 |
| abstract_inverted_index.demonstrates | 329 |
| abstract_inverted_index.experimental | 38 |
| abstract_inverted_index.retroviruses | 13 |
| abstract_inverted_index.applicability | 317 |
| abstract_inverted_index.dinucleotides | 309 |
| abstract_inverted_index.transcription | 279 |
| abstract_inverted_index.understanding | 59 |
| abstract_inverted_index.Explainability | 288 |
| abstract_inverted_index.classification | 87, 102, 170, 190, 194, 202, 286 |
| abstract_inverted_index.explainability | 210 |
| abstract_inverted_index.stress-related | 276 |
| abstract_inverted_index.classification, | 327 |
| abstract_inverted_index.representation. | 144 |
| abstract_inverted_index.retrotransposon | 73, 113 |
| abstract_inverted_index.retrotransposon. | 36 |
| abstract_inverted_index.retrotransposons | 11 |
| abstract_inverted_index.transformer-based | 138 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/12 |
| sustainable_development_goals[0].score | 0.5400000214576721 |
| sustainable_development_goals[0].display_name | Responsible consumption and production |
| citation_normalized_percentile.value | 0.78738732 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |