Detection and Classification of Low-Voltage Series Arc Faults Based on RF-Adaboost-SHAP Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/electronics14193761
Low-voltage series arc faults pose a significant threat to power system safety due to their random, nonlinear, and non-stationary characteristics. Traditional detection methods often suffer from low sensitivity and poor robustness under complex load conditions. To address these challenges, this paper proposes a novel detection framework based on Random Forest (RF) feature selection, Adaptive Boosting (Adaboost) classification, and SHapley Additive exPlanations (SHAP) interpretability. First, RF is employed to rank and select the most discriminative features from arc fault current signals. Then, the selected features are input into an Adaboost classifier to enhance the detection accuracy and generalization capability. Finally, SHAP values are introduced to quantify the contribution of each feature, improving the transparency and interpretability of the model. Experimental results on a self-built arc fault dataset demonstrate that the proposed method achieves an accuracy of 97.1%, outperforming five widely used traditional classifiers. The integration of SHAP further reveals the physical relevance of key features, providing valuable insights for practical applications. This study confirms that the proposed RF-Adaboost-SHAP framework offers both high accuracy and interpretability, making it suitable for real-time arc fault detection in complex load scenarios.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/electronics14193761
- https://www.mdpi.com/2079-9292/14/19/3761/pdf?version=1758634164
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4414426734
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414426734Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/electronics14193761Digital Object Identifier
- Title
-
Detection and Classification of Low-Voltage Series Arc Faults Based on RF-Adaboost-SHAPWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-23Full publication date if available
- Authors
-
Li Qi, Takahiro Kawaguchi, Seiji HashimotoList of authors in order
- Landing page
-
https://doi.org/10.3390/electronics14193761Publisher landing page
- PDF URL
-
https://www.mdpi.com/2079-9292/14/19/3761/pdf?version=1758634164Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2079-9292/14/19/3761/pdf?version=1758634164Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414426734 |
|---|---|
| doi | https://doi.org/10.3390/electronics14193761 |
| ids.doi | https://doi.org/10.3390/electronics14193761 |
| ids.openalex | https://openalex.org/W4414426734 |
| fwci | 0.0 |
| type | article |
| title | Detection and Classification of Low-Voltage Series Arc Faults Based on RF-Adaboost-SHAP |
| biblio.issue | 19 |
| biblio.volume | 14 |
| biblio.last_page | 3761 |
| biblio.first_page | 3761 |
| topics[0].id | https://openalex.org/T12737 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9936000108718872 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Electrical Fault Detection and Protection |
| topics[1].id | https://openalex.org/T11357 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9830999970436096 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1804 |
| topics[1].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[1].display_name | Risk and Safety Analysis |
| topics[2].id | https://openalex.org/T10834 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9459999799728394 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Welding Techniques and Residual Stresses |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| language | en |
| locations[0].id | doi:10.3390/electronics14193761 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202905 |
| locations[0].source.issn | 2079-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-9292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2079-9292/14/19/3761/pdf?version=1758634164 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics |
| locations[0].landing_page_url | https://doi.org/10.3390/electronics14193761 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5040592135 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6646-8528 |
| authorships[0].author.display_name | Li Qi |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I165735259 |
| authorships[0].affiliations[0].raw_affiliation_string | Division of Electronics and Informatics, School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan |
| authorships[0].institutions[0].id | https://openalex.org/I165735259 |
| authorships[0].institutions[0].ror | https://ror.org/046fm7598 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I165735259 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Gunma University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lichun Qi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Division of Electronics and Informatics, School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan |
| authorships[1].author.id | https://openalex.org/A5102867775 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4460-8694 |
| authorships[1].author.display_name | Takahiro Kawaguchi |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I165735259 |
| authorships[1].affiliations[0].raw_affiliation_string | Division of Electronics and Informatics, School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan |
| authorships[1].institutions[0].id | https://openalex.org/I165735259 |
| authorships[1].institutions[0].ror | https://ror.org/046fm7598 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I165735259 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Gunma University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Takahiro Kawaguchi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Division of Electronics and Informatics, School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan |
| authorships[2].author.id | https://openalex.org/A5080497773 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3338-2418 |
| authorships[2].author.display_name | Seiji Hashimoto |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I165735259 |
| authorships[2].affiliations[0].raw_affiliation_string | Division of Electronics and Informatics, School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan |
| authorships[2].institutions[0].id | https://openalex.org/I165735259 |
| authorships[2].institutions[0].ror | https://ror.org/046fm7598 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I165735259 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | Gunma University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Seiji Hashimoto |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Division of Electronics and Informatics, School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2079-9292/14/19/3761/pdf?version=1758634164 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detection and Classification of Low-Voltage Series Arc Faults Based on RF-Adaboost-SHAP |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12737 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9936000108718872 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Electrical Fault Detection and Protection |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/electronics14193761 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202905 |
| best_oa_location.source.issn | 2079-9292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-9292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2079-9292/14/19/3761/pdf?version=1758634164 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/electronics14193761 |
| primary_location.id | doi:10.3390/electronics14193761 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202905 |
| primary_location.source.issn | 2079-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-9292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2079-9292/14/19/3761/pdf?version=1758634164 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics |
| primary_location.landing_page_url | https://doi.org/10.3390/electronics14193761 |
| publication_date | 2025-09-23 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 42, 121 |
| abstract_inverted_index.RF | 64 |
| abstract_inverted_index.To | 35 |
| abstract_inverted_index.an | 87, 132 |
| abstract_inverted_index.in | 182 |
| abstract_inverted_index.is | 65 |
| abstract_inverted_index.it | 175 |
| abstract_inverted_index.of | 107, 115, 134, 144, 151 |
| abstract_inverted_index.on | 47, 120 |
| abstract_inverted_index.to | 8, 13, 67, 90, 103 |
| abstract_inverted_index.The | 142 |
| abstract_inverted_index.and | 17, 28, 57, 69, 95, 113, 172 |
| abstract_inverted_index.arc | 2, 76, 123, 179 |
| abstract_inverted_index.are | 84, 101 |
| abstract_inverted_index.due | 12 |
| abstract_inverted_index.for | 157, 177 |
| abstract_inverted_index.key | 152 |
| abstract_inverted_index.low | 26 |
| abstract_inverted_index.the | 71, 81, 92, 105, 111, 116, 128, 148, 164 |
| abstract_inverted_index.(RF) | 50 |
| abstract_inverted_index.SHAP | 99, 145 |
| abstract_inverted_index.This | 160 |
| abstract_inverted_index.both | 169 |
| abstract_inverted_index.each | 108 |
| abstract_inverted_index.five | 137 |
| abstract_inverted_index.from | 25, 75 |
| abstract_inverted_index.high | 170 |
| abstract_inverted_index.into | 86 |
| abstract_inverted_index.load | 33, 184 |
| abstract_inverted_index.most | 72 |
| abstract_inverted_index.poor | 29 |
| abstract_inverted_index.pose | 4 |
| abstract_inverted_index.rank | 68 |
| abstract_inverted_index.that | 127, 163 |
| abstract_inverted_index.this | 39 |
| abstract_inverted_index.used | 139 |
| abstract_inverted_index.Then, | 80 |
| abstract_inverted_index.based | 46 |
| abstract_inverted_index.fault | 77, 124, 180 |
| abstract_inverted_index.input | 85 |
| abstract_inverted_index.novel | 43 |
| abstract_inverted_index.often | 23 |
| abstract_inverted_index.paper | 40 |
| abstract_inverted_index.power | 9 |
| abstract_inverted_index.study | 161 |
| abstract_inverted_index.their | 14 |
| abstract_inverted_index.these | 37 |
| abstract_inverted_index.under | 31 |
| abstract_inverted_index.(SHAP) | 61 |
| abstract_inverted_index.97.1%, | 135 |
| abstract_inverted_index.First, | 63 |
| abstract_inverted_index.Forest | 49 |
| abstract_inverted_index.Random | 48 |
| abstract_inverted_index.faults | 3 |
| abstract_inverted_index.making | 174 |
| abstract_inverted_index.method | 130 |
| abstract_inverted_index.model. | 117 |
| abstract_inverted_index.offers | 168 |
| abstract_inverted_index.safety | 11 |
| abstract_inverted_index.select | 70 |
| abstract_inverted_index.series | 1 |
| abstract_inverted_index.suffer | 24 |
| abstract_inverted_index.system | 10 |
| abstract_inverted_index.threat | 7 |
| abstract_inverted_index.values | 100 |
| abstract_inverted_index.widely | 138 |
| abstract_inverted_index.SHapley | 58 |
| abstract_inverted_index.address | 36 |
| abstract_inverted_index.complex | 32, 183 |
| abstract_inverted_index.current | 78 |
| abstract_inverted_index.dataset | 125 |
| abstract_inverted_index.enhance | 91 |
| abstract_inverted_index.feature | 51 |
| abstract_inverted_index.further | 146 |
| abstract_inverted_index.methods | 22 |
| abstract_inverted_index.random, | 15 |
| abstract_inverted_index.results | 119 |
| abstract_inverted_index.reveals | 147 |
| abstract_inverted_index.Adaboost | 88 |
| abstract_inverted_index.Adaptive | 53 |
| abstract_inverted_index.Additive | 59 |
| abstract_inverted_index.Boosting | 54 |
| abstract_inverted_index.Finally, | 98 |
| abstract_inverted_index.accuracy | 94, 133, 171 |
| abstract_inverted_index.achieves | 131 |
| abstract_inverted_index.confirms | 162 |
| abstract_inverted_index.employed | 66 |
| abstract_inverted_index.feature, | 109 |
| abstract_inverted_index.features | 74, 83 |
| abstract_inverted_index.insights | 156 |
| abstract_inverted_index.physical | 149 |
| abstract_inverted_index.proposed | 129, 165 |
| abstract_inverted_index.proposes | 41 |
| abstract_inverted_index.quantify | 104 |
| abstract_inverted_index.selected | 82 |
| abstract_inverted_index.signals. | 79 |
| abstract_inverted_index.suitable | 176 |
| abstract_inverted_index.valuable | 155 |
| abstract_inverted_index.detection | 21, 44, 93, 181 |
| abstract_inverted_index.features, | 153 |
| abstract_inverted_index.framework | 45, 167 |
| abstract_inverted_index.improving | 110 |
| abstract_inverted_index.practical | 158 |
| abstract_inverted_index.providing | 154 |
| abstract_inverted_index.real-time | 178 |
| abstract_inverted_index.relevance | 150 |
| abstract_inverted_index.(Adaboost) | 55 |
| abstract_inverted_index.classifier | 89 |
| abstract_inverted_index.introduced | 102 |
| abstract_inverted_index.nonlinear, | 16 |
| abstract_inverted_index.robustness | 30 |
| abstract_inverted_index.scenarios. | 185 |
| abstract_inverted_index.selection, | 52 |
| abstract_inverted_index.self-built | 122 |
| abstract_inverted_index.Low-voltage | 0 |
| abstract_inverted_index.Traditional | 20 |
| abstract_inverted_index.capability. | 97 |
| abstract_inverted_index.challenges, | 38 |
| abstract_inverted_index.conditions. | 34 |
| abstract_inverted_index.demonstrate | 126 |
| abstract_inverted_index.integration | 143 |
| abstract_inverted_index.sensitivity | 27 |
| abstract_inverted_index.significant | 6 |
| abstract_inverted_index.traditional | 140 |
| abstract_inverted_index.Experimental | 118 |
| abstract_inverted_index.classifiers. | 141 |
| abstract_inverted_index.contribution | 106 |
| abstract_inverted_index.exPlanations | 60 |
| abstract_inverted_index.transparency | 112 |
| abstract_inverted_index.applications. | 159 |
| abstract_inverted_index.outperforming | 136 |
| abstract_inverted_index.discriminative | 73 |
| abstract_inverted_index.generalization | 96 |
| abstract_inverted_index.non-stationary | 18 |
| abstract_inverted_index.classification, | 56 |
| abstract_inverted_index.RF-Adaboost-SHAP | 166 |
| abstract_inverted_index.characteristics. | 19 |
| abstract_inverted_index.interpretability | 114 |
| abstract_inverted_index.interpretability, | 173 |
| abstract_inverted_index.interpretability. | 62 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.4900205 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |