Detection and Classification of Temporal Changes for Citrus Canker Growth Rate Using Deep Learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/access.2023.3331735
Citrus canker is among the major plant diseases caused by Xanthomonas citri which affects the quality and quantity of citrus fruit. This results in the reduction of citrus production which causes a huge financial loss and livelihood of the farming community. Thus, it is critically important to build a robust, accurate, and time-efficient detection method for real-time identification of the disease. Due to their powerful learning capabilities and improved feature extraction, deep learning approaches have made it feasible to carry out a number of tasks related to the identification of citrus canker in citrus leaves. Previous research has primarily focused on detecting citrus canker on fruits, early detection on leaves can facilitate the adoption of preventive measures before the disease reaches a critical stage. This paper proposes a novel deep learning-based approach for determining the growth rate of citrus canker by classifying it into six distinct stages: water soaking, yellow chlorosis/initiation, chlorosis, blister formation, canker development start, canker infection (50% of the inoculated area), and canker infection (100% of the inoculated area). The proposed approach involves image conversion, size reduction, image augmentation, and the utilization of DenseNet-121. Experimental results demonstrate a classification accuracy of 98.97% using the suggested approach. The Accuracy was 98.97% with macro precision 97%, weighted precision 99%, Macro recall 98%, weighted recall 98%, macro F1_Score 97% and weighted F1_Score 98%. This study presents a unique technique for detecting and classifying the growth rate of citrus canker based on six different stages, while also calculating the temporal change in the affected area of the disease in inoculated citrus leaves. Furthermore, a mathematical model is proposed to predict the disease’s growth rate at any given time, offering valuable insights for disease management and prevention.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2023.3331735
- https://ieeexplore.ieee.org/ielx7/6287639/6514899/10314481.pdf
- OA Status
- gold
- Cited By
- 13
- References
- 66
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388544026
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388544026Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2023.3331735Digital Object Identifier
- Title
-
Detection and Classification of Temporal Changes for Citrus Canker Growth Rate Using Deep LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Naureen Zainab, Hammad Afzal, Taher Al‐Shehari, Muna Al‐Razgan, Naima Iltaf, Muhammad Zakria, Muhammad Javed Hyder, Raheel NawazList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2023.3331735Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10314481.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10314481.pdfDirect OA link when available
- Concepts
-
Citrus canker, Canker, Chlorosis, Artificial intelligence, Computer science, F1 score, Horticulture, Pattern recognition (psychology), Biology, Genetics, BacteriaTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 5Per-year citation counts (last 5 years)
- References (count)
-
66Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388544026 |
|---|---|
| doi | https://doi.org/10.1109/access.2023.3331735 |
| ids.doi | https://doi.org/10.1109/access.2023.3331735 |
| ids.openalex | https://openalex.org/W4388544026 |
| fwci | 3.43434302 |
| type | article |
| title | Detection and Classification of Temporal Changes for Citrus Canker Growth Rate Using Deep Learning |
| awards[0].id | https://openalex.org/G741875929 |
| awards[0].funder_id | https://openalex.org/F4320321145 |
| awards[0].display_name | |
| awards[0].funder_award_id | RSP2023R206 |
| awards[0].funder_display_name | King Saud University |
| biblio.issue | |
| biblio.volume | 11 |
| biblio.last_page | 127650 |
| biblio.first_page | 127637 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9954000115394592 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T11578 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9952999949455261 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Plant Pathogenic Bacteria Studies |
| topics[2].id | https://openalex.org/T10825 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9930999875068665 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1307 |
| topics[2].subfield.display_name | Cell Biology |
| topics[2].display_name | Plant Pathogens and Fungal Diseases |
| funders[0].id | https://openalex.org/F4320321145 |
| funders[0].ror | https://ror.org/02f81g417 |
| funders[0].display_name | King Saud University |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C2775862043 |
| concepts[0].level | 3 |
| concepts[0].score | 0.924056887626648 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2955986 |
| concepts[0].display_name | Citrus canker |
| concepts[1].id | https://openalex.org/C2777247689 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8285112977027893 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q811596 |
| concepts[1].display_name | Canker |
| concepts[2].id | https://openalex.org/C2776411976 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6542162895202637 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1075317 |
| concepts[2].display_name | Chlorosis |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5118216872215271 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.43595194816589355 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C148524875 |
| concepts[5].level | 2 |
| concepts[5].score | 0.41832953691482544 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6975395 |
| concepts[5].display_name | F1 score |
| concepts[6].id | https://openalex.org/C144027150 |
| concepts[6].level | 1 |
| concepts[6].score | 0.40422677993774414 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q48803 |
| concepts[6].display_name | Horticulture |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.328008770942688 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C86803240 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3213060796260834 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[8].display_name | Biology |
| concepts[9].id | https://openalex.org/C54355233 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[9].display_name | Genetics |
| concepts[10].id | https://openalex.org/C523546767 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q10876 |
| concepts[10].display_name | Bacteria |
| keywords[0].id | https://openalex.org/keywords/citrus-canker |
| keywords[0].score | 0.924056887626648 |
| keywords[0].display_name | Citrus canker |
| keywords[1].id | https://openalex.org/keywords/canker |
| keywords[1].score | 0.8285112977027893 |
| keywords[1].display_name | Canker |
| keywords[2].id | https://openalex.org/keywords/chlorosis |
| keywords[2].score | 0.6542162895202637 |
| keywords[2].display_name | Chlorosis |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5118216872215271 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.43595194816589355 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/f1-score |
| keywords[5].score | 0.41832953691482544 |
| keywords[5].display_name | F1 score |
| keywords[6].id | https://openalex.org/keywords/horticulture |
| keywords[6].score | 0.40422677993774414 |
| keywords[6].display_name | Horticulture |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.328008770942688 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/biology |
| keywords[8].score | 0.3213060796260834 |
| keywords[8].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1109/access.2023.3331735 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10314481.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2023.3331735 |
| locations[1].id | pmh:oai:doaj.org/article:0a40f73e916d42e69e4fdccf4c079bbe |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 11, Pp 127637-127650 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/0a40f73e916d42e69e4fdccf4c079bbe |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5048303591 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Naureen Zainab |
| authorships[0].countries | PK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I929597975 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Software Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan |
| authorships[0].institutions[0].id | https://openalex.org/I929597975 |
| authorships[0].institutions[0].ror | https://ror.org/03w2j5y17 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I929597975 |
| authorships[0].institutions[0].country_code | PK |
| authorships[0].institutions[0].display_name | National University of Sciences and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Naureen Zainab |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Software Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan |
| authorships[1].author.id | https://openalex.org/A5009591817 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9583-5585 |
| authorships[1].author.display_name | Hammad Afzal |
| authorships[1].countries | PK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I929597975 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Software Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan |
| authorships[1].institutions[0].id | https://openalex.org/I929597975 |
| authorships[1].institutions[0].ror | https://ror.org/03w2j5y17 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I929597975 |
| authorships[1].institutions[0].country_code | PK |
| authorships[1].institutions[0].display_name | National University of Sciences and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hammad Afzal |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Software Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan |
| authorships[2].author.id | https://openalex.org/A5069238097 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9783-919X |
| authorships[2].author.display_name | Taher Al‐Shehari |
| authorships[2].countries | SA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I28022161 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Self-Development Skills-Computer Skills, Common First Year Deanship, King Saud University, Riyadh, Saudi Arabia |
| authorships[2].institutions[0].id | https://openalex.org/I28022161 |
| authorships[2].institutions[0].ror | https://ror.org/02f81g417 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I28022161 |
| authorships[2].institutions[0].country_code | SA |
| authorships[2].institutions[0].display_name | King Saud University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Taher Al-Shehari |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Self-Development Skills-Computer Skills, Common First Year Deanship, King Saud University, Riyadh, Saudi Arabia |
| authorships[3].author.id | https://openalex.org/A5030457122 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9705-3867 |
| authorships[3].author.display_name | Muna Al‐Razgan |
| authorships[3].countries | SA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I28022161 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia |
| authorships[3].institutions[0].id | https://openalex.org/I28022161 |
| authorships[3].institutions[0].ror | https://ror.org/02f81g417 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I28022161 |
| authorships[3].institutions[0].country_code | SA |
| authorships[3].institutions[0].display_name | King Saud University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Muna Al-Razgan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia |
| authorships[4].author.id | https://openalex.org/A5065396147 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5392-5187 |
| authorships[4].author.display_name | Naima Iltaf |
| authorships[4].countries | PK |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I929597975 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Software Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan |
| authorships[4].institutions[0].id | https://openalex.org/I929597975 |
| authorships[4].institutions[0].ror | https://ror.org/03w2j5y17 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I929597975 |
| authorships[4].institutions[0].country_code | PK |
| authorships[4].institutions[0].display_name | National University of Sciences and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Naima Iltaf |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Software Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan |
| authorships[5].author.id | https://openalex.org/A5016727106 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8501-0926 |
| authorships[5].author.display_name | Muhammad Zakria |
| authorships[5].countries | PK |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I2799809383 |
| authorships[5].affiliations[0].raw_affiliation_string | Crop Diseases Research Institute (C.D.R.I.), National Agricultural Research Centre (NARC), Park Road, Islamabad, Pakistan |
| authorships[5].institutions[0].id | https://openalex.org/I2799809383 |
| authorships[5].institutions[0].ror | https://ror.org/04eq9g543 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I2799809383 |
| authorships[5].institutions[0].country_code | PK |
| authorships[5].institutions[0].display_name | Pakistan Agricultural Research Council |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Muhammad Zakria |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Crop Diseases Research Institute (C.D.R.I.), National Agricultural Research Centre (NARC), Park Road, Islamabad, Pakistan |
| authorships[6].author.id | https://openalex.org/A5008016499 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Muhammad Javed Hyder |
| authorships[6].countries | PK |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210088086 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, Capital University of Science and Technology (CUST), Islamabad, Pakistan |
| authorships[6].institutions[0].id | https://openalex.org/I4210088086 |
| authorships[6].institutions[0].ror | https://ror.org/004776246 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210088086 |
| authorships[6].institutions[0].country_code | PK |
| authorships[6].institutions[0].display_name | Capital University of Science and Technology |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Muhammad Javed Hyder |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Mechanical Engineering, Capital University of Science and Technology (CUST), Islamabad, Pakistan |
| authorships[7].author.id | https://openalex.org/A5087735486 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-9588-0052 |
| authorships[7].author.display_name | Raheel Nawaz |
| authorships[7].countries | GB |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I198012923 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Digital Transformation, Staffordshire University, Stoke-on-Trent, U.K. |
| authorships[7].institutions[0].id | https://openalex.org/I198012923 |
| authorships[7].institutions[0].ror | https://ror.org/00d6k8y35 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I198012923 |
| authorships[7].institutions[0].country_code | GB |
| authorships[7].institutions[0].display_name | University of Staffordshire |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Raheel Nawaz |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Digital Transformation, Staffordshire University, Stoke-on-Trent, U.K. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10314481.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detection and Classification of Temporal Changes for Citrus Canker Growth Rate Using Deep Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9954000115394592 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W2990395898, https://openalex.org/W2571568914, https://openalex.org/W2546407665, https://openalex.org/W3201375669, https://openalex.org/W2081212551, https://openalex.org/W2067152609, https://openalex.org/W2559846411, https://openalex.org/W2073677295, https://openalex.org/W4387251271, https://openalex.org/W2155563713 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2023.3331735 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10314481.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2023.3331735 |
| primary_location.id | doi:10.1109/access.2023.3331735 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10314481.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2023.3331735 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3162088729, https://openalex.org/W3087102804, https://openalex.org/W4316468734, https://openalex.org/W2073677295, https://openalex.org/W2057106128, https://openalex.org/W2181320974, https://openalex.org/W2937035224, https://openalex.org/W2962609354, https://openalex.org/W4200119643, https://openalex.org/W2891667148, https://openalex.org/W4214902001, https://openalex.org/W4282940054, https://openalex.org/W3164104137, https://openalex.org/W4361002760, https://openalex.org/W2548258044, https://openalex.org/W4389724067, https://openalex.org/W4285733716, https://openalex.org/W4377107679, https://openalex.org/W4313555269, https://openalex.org/W4318777262, https://openalex.org/W2963400281, https://openalex.org/W4213286035, https://openalex.org/W2963446712, https://openalex.org/W2913519391, https://openalex.org/W2944755515, https://openalex.org/W4317830120, https://openalex.org/W2105397979, https://openalex.org/W4256648432, https://openalex.org/W6711008611, https://openalex.org/W4220782498, https://openalex.org/W6810907425, https://openalex.org/W4205486683, https://openalex.org/W3084169874, https://openalex.org/W2560058449, https://openalex.org/W4225315650, https://openalex.org/W3183983429, https://openalex.org/W6737664043, https://openalex.org/W4210279595, https://openalex.org/W2590489721, https://openalex.org/W2012908927, https://openalex.org/W6704513472, https://openalex.org/W4241699496, https://openalex.org/W6675814490, https://openalex.org/W2801303530, https://openalex.org/W4362680592, https://openalex.org/W4385625872, https://openalex.org/W2901729182, https://openalex.org/W4385444410, https://openalex.org/W3193425446, https://openalex.org/W3118817727, https://openalex.org/W4308196265, https://openalex.org/W2028649791, https://openalex.org/W2050601225, https://openalex.org/W4281717589, https://openalex.org/W4364376158, https://openalex.org/W4353029161, https://openalex.org/W4206506664, https://openalex.org/W2995504058, https://openalex.org/W3149839483, https://openalex.org/W4297775537, https://openalex.org/W2321157087, https://openalex.org/W2341883776, https://openalex.org/W4256664291, https://openalex.org/W4298646084, https://openalex.org/W4224884895, https://openalex.org/W2386976010 |
| referenced_works_count | 66 |
| abstract_inverted_index.a | 31, 48, 81, 121, 127, 190, 226, 262 |
| abstract_inverted_index.at | 273 |
| abstract_inverted_index.by | 9, 140 |
| abstract_inverted_index.in | 23, 92, 250, 257 |
| abstract_inverted_index.is | 2, 43, 265 |
| abstract_inverted_index.it | 42, 76, 142 |
| abstract_inverted_index.of | 18, 26, 37, 58, 83, 89, 114, 137, 160, 168, 185, 193, 236, 254 |
| abstract_inverted_index.on | 100, 104, 108, 240 |
| abstract_inverted_index.to | 46, 62, 78, 86, 267 |
| abstract_inverted_index.Due | 61 |
| abstract_inverted_index.The | 172, 199 |
| abstract_inverted_index.and | 16, 35, 51, 67, 164, 182, 219, 231, 283 |
| abstract_inverted_index.any | 274 |
| abstract_inverted_index.can | 110 |
| abstract_inverted_index.for | 55, 132, 229, 280 |
| abstract_inverted_index.has | 97 |
| abstract_inverted_index.out | 80 |
| abstract_inverted_index.six | 144, 241 |
| abstract_inverted_index.the | 4, 14, 24, 38, 59, 87, 112, 118, 134, 161, 169, 183, 196, 233, 247, 251, 255, 269 |
| abstract_inverted_index.was | 201 |
| abstract_inverted_index.This | 21, 124, 223 |
| abstract_inverted_index.also | 245 |
| abstract_inverted_index.area | 253 |
| abstract_inverted_index.deep | 71, 129 |
| abstract_inverted_index.have | 74 |
| abstract_inverted_index.huge | 32 |
| abstract_inverted_index.into | 143 |
| abstract_inverted_index.loss | 34 |
| abstract_inverted_index.made | 75 |
| abstract_inverted_index.rate | 136, 235, 272 |
| abstract_inverted_index.size | 178 |
| abstract_inverted_index.with | 203 |
| abstract_inverted_index.Macro | 210 |
| abstract_inverted_index.Thus, | 41 |
| abstract_inverted_index.among | 3 |
| abstract_inverted_index.based | 239 |
| abstract_inverted_index.build | 47 |
| abstract_inverted_index.carry | 79 |
| abstract_inverted_index.citri | 11 |
| abstract_inverted_index.early | 106 |
| abstract_inverted_index.given | 275 |
| abstract_inverted_index.image | 176, 180 |
| abstract_inverted_index.macro | 204, 216 |
| abstract_inverted_index.major | 5 |
| abstract_inverted_index.model | 264 |
| abstract_inverted_index.novel | 128 |
| abstract_inverted_index.paper | 125 |
| abstract_inverted_index.plant | 6 |
| abstract_inverted_index.study | 224 |
| abstract_inverted_index.tasks | 84 |
| abstract_inverted_index.their | 63 |
| abstract_inverted_index.time, | 276 |
| abstract_inverted_index.using | 195 |
| abstract_inverted_index.water | 147 |
| abstract_inverted_index.which | 12, 29 |
| abstract_inverted_index.while | 244 |
| abstract_inverted_index.Citrus | 0 |
| abstract_inverted_index.area), | 163 |
| abstract_inverted_index.area). | 171 |
| abstract_inverted_index.before | 117 |
| abstract_inverted_index.canker | 1, 91, 103, 139, 154, 157, 165, 238 |
| abstract_inverted_index.caused | 8 |
| abstract_inverted_index.causes | 30 |
| abstract_inverted_index.change | 249 |
| abstract_inverted_index.citrus | 19, 27, 90, 93, 102, 138, 237, 259 |
| abstract_inverted_index.fruit. | 20 |
| abstract_inverted_index.growth | 135, 234, 271 |
| abstract_inverted_index.leaves | 109 |
| abstract_inverted_index.method | 54 |
| abstract_inverted_index.number | 82 |
| abstract_inverted_index.recall | 211, 214 |
| abstract_inverted_index.stage. | 123 |
| abstract_inverted_index.start, | 156 |
| abstract_inverted_index.unique | 227 |
| abstract_inverted_index.yellow | 149 |
| abstract_inverted_index.affects | 13 |
| abstract_inverted_index.blister | 152 |
| abstract_inverted_index.disease | 119, 256, 281 |
| abstract_inverted_index.farming | 39 |
| abstract_inverted_index.feature | 69 |
| abstract_inverted_index.focused | 99 |
| abstract_inverted_index.fruits, | 105 |
| abstract_inverted_index.leaves. | 94, 260 |
| abstract_inverted_index.predict | 268 |
| abstract_inverted_index.quality | 15 |
| abstract_inverted_index.reaches | 120 |
| abstract_inverted_index.related | 85 |
| abstract_inverted_index.results | 22, 188 |
| abstract_inverted_index.robust, | 49 |
| abstract_inverted_index.stages, | 243 |
| abstract_inverted_index.stages: | 146 |
| abstract_inverted_index.Accuracy | 200 |
| abstract_inverted_index.Previous | 95 |
| abstract_inverted_index.accuracy | 192 |
| abstract_inverted_index.adoption | 113 |
| abstract_inverted_index.affected | 252 |
| abstract_inverted_index.approach | 131, 174 |
| abstract_inverted_index.critical | 122 |
| abstract_inverted_index.disease. | 60 |
| abstract_inverted_index.diseases | 7 |
| abstract_inverted_index.distinct | 145 |
| abstract_inverted_index.feasible | 77 |
| abstract_inverted_index.improved | 68 |
| abstract_inverted_index.insights | 279 |
| abstract_inverted_index.involves | 175 |
| abstract_inverted_index.learning | 65, 72 |
| abstract_inverted_index.measures | 116 |
| abstract_inverted_index.offering | 277 |
| abstract_inverted_index.powerful | 64 |
| abstract_inverted_index.presents | 225 |
| abstract_inverted_index.proposed | 173, 266 |
| abstract_inverted_index.proposes | 126 |
| abstract_inverted_index.quantity | 17 |
| abstract_inverted_index.research | 96 |
| abstract_inverted_index.soaking, | 148 |
| abstract_inverted_index.temporal | 248 |
| abstract_inverted_index.valuable | 278 |
| abstract_inverted_index.weighted | 207, 213, 220 |
| abstract_inverted_index.accurate, | 50 |
| abstract_inverted_index.approach. | 198 |
| abstract_inverted_index.detecting | 101, 230 |
| abstract_inverted_index.detection | 53, 107 |
| abstract_inverted_index.different | 242 |
| abstract_inverted_index.financial | 33 |
| abstract_inverted_index.important | 45 |
| abstract_inverted_index.infection | 158, 166 |
| abstract_inverted_index.precision | 205, 208 |
| abstract_inverted_index.primarily | 98 |
| abstract_inverted_index.real-time | 56 |
| abstract_inverted_index.reduction | 25 |
| abstract_inverted_index.suggested | 197 |
| abstract_inverted_index.technique | 228 |
| abstract_inverted_index.97% | 218 |
| abstract_inverted_index.approaches | 73 |
| abstract_inverted_index.chlorosis, | 151 |
| abstract_inverted_index.community. | 40 |
| abstract_inverted_index.critically | 44 |
| abstract_inverted_index.facilitate | 111 |
| abstract_inverted_index.formation, | 153 |
| abstract_inverted_index.inoculated | 162, 170, 258 |
| abstract_inverted_index.livelihood | 36 |
| abstract_inverted_index.management | 282 |
| abstract_inverted_index.preventive | 115 |
| abstract_inverted_index.production | 28 |
| abstract_inverted_index.reduction, | 179 |
| abstract_inverted_index.(50% | 159 |
| abstract_inverted_index.97%, | 206 |
| abstract_inverted_index.98%, | 212, 215 |
| abstract_inverted_index.98%. | 222 |
| abstract_inverted_index.99%, | 209 |
| abstract_inverted_index.Xanthomonas | 10 |
| abstract_inverted_index.calculating | 246 |
| abstract_inverted_index.classifying | 141, 232 |
| abstract_inverted_index.conversion, | 177 |
| abstract_inverted_index.demonstrate | 189 |
| abstract_inverted_index.determining | 133 |
| abstract_inverted_index.development | 155 |
| abstract_inverted_index.extraction, | 70 |
| abstract_inverted_index.prevention. | 284 |
| abstract_inverted_index.utilization | 184 |
| abstract_inverted_index.(100% | 167 |
| abstract_inverted_index.Experimental | 187 |
| abstract_inverted_index.Furthermore, | 261 |
| abstract_inverted_index.capabilities | 66 |
| abstract_inverted_index.mathematical | 263 |
| abstract_inverted_index.98.97% | 194, 202 |
| abstract_inverted_index.DenseNet-121. | 186 |
| abstract_inverted_index.augmentation, | 181 |
| abstract_inverted_index.classification | 191 |
| abstract_inverted_index.identification | 57, 88 |
| abstract_inverted_index.learning-based | 130 |
| abstract_inverted_index.time-efficient | 52 |
| abstract_inverted_index.F1_Score | 217, 221 |
| abstract_inverted_index.disease’s | 270 |
| abstract_inverted_index.chlorosis/initiation, | 150 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.9564424 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |