Detection and counting of root-knot nematodes using YOLO models with mosaic augmentation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.biosx.2023.100407
Root-knot nematodes (RKN) are microscopic plant parasites that cause significant economic damage to crops and vegetables. Accurate assessment of RKN populations is required for effective management of this disease. Several “You Only Look Once” (YOLO versions 2 to 7) architectures were investigated for the application of RKN enumeration in microscopic images. YOLOv5-608 model attained Precision score of 0.960, Recall of 0.951, F1-score of 0.990, mAP of 0.972 without mosaic augmentation. Using mosaic dataset, this was increased to Precision of 1.00, Recall of 0.998, F1-score of 0.999, and mAP of 0.995. YOLOv5-608 model showed the highest correlation between the manual and machine counting of RKN: coefficient of determination (R2) of 0.991, root mean square error (RMSE) of 0.313, and coefficient of variation (CV) of 0.251. For free-living nematodes (FLN), this resulted in R2 of 0.994, RMSE of 0.058, and CV of 1.760. YOLOv7-608 achieved the highest correlation between manual and machine counting of overlapped RKN (R2 of 0.970, RMSE of 0.595, and CV of 0.123). In addition, this study explored a new application of mosaic augmentation to analyse microscopic images acquired with different objective lense magnifications. The proposed framework supports the rapid assessment of plant parasitic nematodes necessary to implement nematode control strategies and improve crop management practices.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.biosx.2023.100407
- OA Status
- gold
- Cited By
- 20
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387007015
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387007015Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.biosx.2023.100407Digital Object Identifier
- Title
-
Detection and counting of root-knot nematodes using YOLO models with mosaic augmentationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-25Full publication date if available
- Authors
-
Top Bahadur Pun, Arjun Neupane, Richard Koech, Kerry B. WalshList of authors in order
- Landing page
-
https://doi.org/10.1016/j.biosx.2023.100407Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.biosx.2023.100407Direct OA link when available
- Concepts
-
Knot (papermaking), Correlation coefficient, Mathematics, Pearson product-moment correlation coefficient, Statistics, Mean squared error, Coefficient of determination, Enumeration, Horticulture, Biology, Combinatorics, Materials science, Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
20Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 9, 2024: 7, 2023: 4Per-year citation counts (last 5 years)
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387007015 |
|---|---|
| doi | https://doi.org/10.1016/j.biosx.2023.100407 |
| ids.doi | https://doi.org/10.1016/j.biosx.2023.100407 |
| ids.openalex | https://openalex.org/W4387007015 |
| fwci | 5.28360465 |
| type | article |
| title | Detection and counting of root-knot nematodes using YOLO models with mosaic augmentation |
| biblio.issue | |
| biblio.volume | 15 |
| biblio.last_page | 100407 |
| biblio.first_page | 100407 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9912999868392944 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T11179 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.991100013256073 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Nematode management and characterization studies |
| topics[2].id | https://openalex.org/T12660 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9257000088691711 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Plant Disease Management Techniques |
| funders[0].id | https://openalex.org/F4320315885 |
| funders[0].ror | https://ror.org/0314h5y94 |
| funders[0].display_name | Australian Government |
| funders[1].id | https://openalex.org/F4320320980 |
| funders[1].ror | https://ror.org/023q4bk22 |
| funders[1].display_name | Central Queensland University |
| is_xpac | False |
| apc_list.value | 1500 |
| apc_list.currency | USD |
| apc_list.value_usd | 1500 |
| apc_paid.value | 1500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1500 |
| concepts[0].id | https://openalex.org/C2779863119 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6411154270172119 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6423048 |
| concepts[0].display_name | Knot (papermaking) |
| concepts[1].id | https://openalex.org/C2780092901 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5874152779579163 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3433612 |
| concepts[1].display_name | Correlation coefficient |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5684911608695984 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C55078378 |
| concepts[3].level | 2 |
| concepts[3].score | 0.49796581268310547 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1136628 |
| concepts[3].display_name | Pearson product-moment correlation coefficient |
| concepts[4].id | https://openalex.org/C105795698 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4524945914745331 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[4].display_name | Statistics |
| concepts[5].id | https://openalex.org/C139945424 |
| concepts[5].level | 2 |
| concepts[5].score | 0.44778522849082947 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[5].display_name | Mean squared error |
| concepts[6].id | https://openalex.org/C128990827 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4225746989250183 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192830 |
| concepts[6].display_name | Coefficient of determination |
| concepts[7].id | https://openalex.org/C156340839 |
| concepts[7].level | 2 |
| concepts[7].score | 0.410088449716568 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2704791 |
| concepts[7].display_name | Enumeration |
| concepts[8].id | https://openalex.org/C144027150 |
| concepts[8].level | 1 |
| concepts[8].score | 0.33789512515068054 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q48803 |
| concepts[8].display_name | Horticulture |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.32899051904678345 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C114614502 |
| concepts[10].level | 1 |
| concepts[10].score | 0.12047192454338074 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[10].display_name | Combinatorics |
| concepts[11].id | https://openalex.org/C192562407 |
| concepts[11].level | 0 |
| concepts[11].score | 0.07025870680809021 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[11].display_name | Materials science |
| concepts[12].id | https://openalex.org/C159985019 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[12].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/knot |
| keywords[0].score | 0.6411154270172119 |
| keywords[0].display_name | Knot (papermaking) |
| keywords[1].id | https://openalex.org/keywords/correlation-coefficient |
| keywords[1].score | 0.5874152779579163 |
| keywords[1].display_name | Correlation coefficient |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.5684911608695984 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/pearson-product-moment-correlation-coefficient |
| keywords[3].score | 0.49796581268310547 |
| keywords[3].display_name | Pearson product-moment correlation coefficient |
| keywords[4].id | https://openalex.org/keywords/statistics |
| keywords[4].score | 0.4524945914745331 |
| keywords[4].display_name | Statistics |
| keywords[5].id | https://openalex.org/keywords/mean-squared-error |
| keywords[5].score | 0.44778522849082947 |
| keywords[5].display_name | Mean squared error |
| keywords[6].id | https://openalex.org/keywords/coefficient-of-determination |
| keywords[6].score | 0.4225746989250183 |
| keywords[6].display_name | Coefficient of determination |
| keywords[7].id | https://openalex.org/keywords/enumeration |
| keywords[7].score | 0.410088449716568 |
| keywords[7].display_name | Enumeration |
| keywords[8].id | https://openalex.org/keywords/horticulture |
| keywords[8].score | 0.33789512515068054 |
| keywords[8].display_name | Horticulture |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.32899051904678345 |
| keywords[9].display_name | Biology |
| keywords[10].id | https://openalex.org/keywords/combinatorics |
| keywords[10].score | 0.12047192454338074 |
| keywords[10].display_name | Combinatorics |
| keywords[11].id | https://openalex.org/keywords/materials-science |
| keywords[11].score | 0.07025870680809021 |
| keywords[11].display_name | Materials science |
| language | en |
| locations[0].id | doi:10.1016/j.biosx.2023.100407 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210214496 |
| locations[0].source.issn | 2590-1370 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2590-1370 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Biosensors and Bioelectronics X |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Biosensors and Bioelectronics: X |
| locations[0].landing_page_url | https://doi.org/10.1016/j.biosx.2023.100407 |
| locations[1].id | pmh:oai:doaj.org/article:3f1eb2a5ad414a438e70f63c9c4cccba |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Biosensors and Bioelectronics: X, Vol 15, Iss , Pp 100407- (2023) |
| locations[1].landing_page_url | https://doaj.org/article/3f1eb2a5ad414a438e70f63c9c4cccba |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5036202905 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Top Bahadur Pun |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I74899385 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Engineering and Technology, Central Queensland University, Rockhampton, QLD, 4700, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I74899385 |
| authorships[0].institutions[0].ror | https://ror.org/023q4bk22 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I74899385 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | Central Queensland University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Top Bahadur Pun |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Engineering and Technology, Central Queensland University, Rockhampton, QLD, 4700, Australia |
| authorships[1].author.id | https://openalex.org/A5019258868 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1010-7552 |
| authorships[1].author.display_name | Arjun Neupane |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I74899385 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Engineering and Technology, Central Queensland University, Rockhampton, QLD, 4700, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I74899385 |
| authorships[1].institutions[0].ror | https://ror.org/023q4bk22 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I74899385 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | Central Queensland University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Arjun Neupane |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Engineering and Technology, Central Queensland University, Rockhampton, QLD, 4700, Australia |
| authorships[2].author.id | https://openalex.org/A5089823872 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8989-4319 |
| authorships[2].author.display_name | Richard Koech |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I74899385 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Health, Medical and Applied Sciences, Central Queensland University, Bundaberg, QLD, 4760, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I74899385 |
| authorships[2].institutions[0].ror | https://ror.org/023q4bk22 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I74899385 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | Central Queensland University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Richard Koech |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Health, Medical and Applied Sciences, Central Queensland University, Bundaberg, QLD, 4760, Australia |
| authorships[3].author.id | https://openalex.org/A5081837621 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3033-8622 |
| authorships[3].author.display_name | Kerry B. Walsh |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I74899385 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, 4700, Australia |
| authorships[3].institutions[0].id | https://openalex.org/I74899385 |
| authorships[3].institutions[0].ror | https://ror.org/023q4bk22 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I74899385 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | Central Queensland University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Kerry Walsh |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, 4700, Australia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.biosx.2023.100407 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detection and counting of root-knot nematodes using YOLO models with mosaic augmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9912999868392944 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W357196361, https://openalex.org/W3109425891, https://openalex.org/W1036938216, https://openalex.org/W2113714434, https://openalex.org/W2377792686, https://openalex.org/W4200439127, https://openalex.org/W829658220, https://openalex.org/W3096637473, https://openalex.org/W2027314909, https://openalex.org/W2946560178 |
| cited_by_count | 20 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 9 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.biosx.2023.100407 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210214496 |
| best_oa_location.source.issn | 2590-1370 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2590-1370 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Biosensors and Bioelectronics X |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Biosensors and Bioelectronics: X |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.biosx.2023.100407 |
| primary_location.id | doi:10.1016/j.biosx.2023.100407 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210214496 |
| primary_location.source.issn | 2590-1370 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2590-1370 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Biosensors and Bioelectronics X |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Biosensors and Bioelectronics: X |
| primary_location.landing_page_url | https://doi.org/10.1016/j.biosx.2023.100407 |
| publication_date | 2023-09-25 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2023595878, https://openalex.org/W4200349706, https://openalex.org/W2807169760, https://openalex.org/W4385491061, https://openalex.org/W6777046832, https://openalex.org/W2065999373, https://openalex.org/W2102148524, https://openalex.org/W6803398002, https://openalex.org/W6777941498, https://openalex.org/W2999309192, https://openalex.org/W2981380781, https://openalex.org/W3188082098, https://openalex.org/W4313531454, https://openalex.org/W3184977298, https://openalex.org/W6725739302, https://openalex.org/W6603984027, https://openalex.org/W2981211097, https://openalex.org/W6687171081, https://openalex.org/W2074070766, https://openalex.org/W2906506339, https://openalex.org/W6803088426, https://openalex.org/W2809598685, https://openalex.org/W4280526724, https://openalex.org/W2952757700, https://openalex.org/W2019655958, https://openalex.org/W3216843742, https://openalex.org/W4224290289, https://openalex.org/W6628973269, https://openalex.org/W3088751563, https://openalex.org/W2954996726, https://openalex.org/W3160230758, https://openalex.org/W3036042197, https://openalex.org/W6849520326, https://openalex.org/W4306769399, https://openalex.org/W6750297666, https://openalex.org/W3198069414, https://openalex.org/W2604213426, https://openalex.org/W2188292956, https://openalex.org/W97504207, https://openalex.org/W2749638221, https://openalex.org/W4210327135, https://openalex.org/W2773726006, https://openalex.org/W4234903585, https://openalex.org/W3207258980, https://openalex.org/W2963037989, https://openalex.org/W4386076325, https://openalex.org/W3018757597, https://openalex.org/W4236965008, https://openalex.org/W4205570975 |
| referenced_works_count | 49 |
| abstract_inverted_index.2 | 36 |
| abstract_inverted_index.a | 169 |
| abstract_inverted_index.7) | 38 |
| abstract_inverted_index.CV | 138, 161 |
| abstract_inverted_index.In | 164 |
| abstract_inverted_index.R2 | 131 |
| abstract_inverted_index.in | 48, 130 |
| abstract_inverted_index.is | 21 |
| abstract_inverted_index.of | 18, 26, 45, 56, 59, 62, 65, 78, 81, 84, 88, 102, 105, 108, 115, 119, 122, 132, 135, 139, 151, 155, 158, 162, 172, 192 |
| abstract_inverted_index.to | 12, 37, 76, 175, 197 |
| abstract_inverted_index.(R2 | 154 |
| abstract_inverted_index.For | 124 |
| abstract_inverted_index.RKN | 19, 46, 153 |
| abstract_inverted_index.The | 185 |
| abstract_inverted_index.and | 14, 86, 99, 117, 137, 148, 160, 202 |
| abstract_inverted_index.are | 3 |
| abstract_inverted_index.for | 23, 42 |
| abstract_inverted_index.mAP | 64, 87 |
| abstract_inverted_index.new | 170 |
| abstract_inverted_index.the | 43, 93, 97, 143, 189 |
| abstract_inverted_index.was | 74 |
| abstract_inverted_index.(CV) | 121 |
| abstract_inverted_index.(R2) | 107 |
| abstract_inverted_index.Look | 32 |
| abstract_inverted_index.Only | 31 |
| abstract_inverted_index.RKN: | 103 |
| abstract_inverted_index.RMSE | 134, 157 |
| abstract_inverted_index.crop | 204 |
| abstract_inverted_index.mean | 111 |
| abstract_inverted_index.root | 110 |
| abstract_inverted_index.that | 7 |
| abstract_inverted_index.this | 27, 73, 128, 166 |
| abstract_inverted_index.were | 40 |
| abstract_inverted_index.with | 180 |
| abstract_inverted_index.(RKN) | 2 |
| abstract_inverted_index.(YOLO | 34 |
| abstract_inverted_index.0.972 | 66 |
| abstract_inverted_index.1.00, | 79 |
| abstract_inverted_index.Using | 70 |
| abstract_inverted_index.cause | 8 |
| abstract_inverted_index.crops | 13 |
| abstract_inverted_index.error | 113 |
| abstract_inverted_index.lense | 183 |
| abstract_inverted_index.model | 52, 91 |
| abstract_inverted_index.plant | 5, 193 |
| abstract_inverted_index.rapid | 190 |
| abstract_inverted_index.score | 55 |
| abstract_inverted_index.study | 167 |
| abstract_inverted_index.(FLN), | 127 |
| abstract_inverted_index.(RMSE) | 114 |
| abstract_inverted_index.0.058, | 136 |
| abstract_inverted_index.0.251. | 123 |
| abstract_inverted_index.0.313, | 116 |
| abstract_inverted_index.0.595, | 159 |
| abstract_inverted_index.0.951, | 60 |
| abstract_inverted_index.0.960, | 57 |
| abstract_inverted_index.0.970, | 156 |
| abstract_inverted_index.0.990, | 63 |
| abstract_inverted_index.0.991, | 109 |
| abstract_inverted_index.0.994, | 133 |
| abstract_inverted_index.0.995. | 89 |
| abstract_inverted_index.0.998, | 82 |
| abstract_inverted_index.0.999, | 85 |
| abstract_inverted_index.1.760. | 140 |
| abstract_inverted_index.Recall | 58, 80 |
| abstract_inverted_index.damage | 11 |
| abstract_inverted_index.images | 178 |
| abstract_inverted_index.manual | 98, 147 |
| abstract_inverted_index.mosaic | 68, 71, 173 |
| abstract_inverted_index.showed | 92 |
| abstract_inverted_index.square | 112 |
| abstract_inverted_index.“You | 30 |
| abstract_inverted_index.0.123). | 163 |
| abstract_inverted_index.Once” | 33 |
| abstract_inverted_index.Several | 29 |
| abstract_inverted_index.analyse | 176 |
| abstract_inverted_index.between | 96, 146 |
| abstract_inverted_index.control | 200 |
| abstract_inverted_index.highest | 94, 144 |
| abstract_inverted_index.images. | 50 |
| abstract_inverted_index.improve | 203 |
| abstract_inverted_index.machine | 100, 149 |
| abstract_inverted_index.without | 67 |
| abstract_inverted_index.Accurate | 16 |
| abstract_inverted_index.F1-score | 61, 83 |
| abstract_inverted_index.achieved | 142 |
| abstract_inverted_index.acquired | 179 |
| abstract_inverted_index.attained | 53 |
| abstract_inverted_index.counting | 101, 150 |
| abstract_inverted_index.dataset, | 72 |
| abstract_inverted_index.disease. | 28 |
| abstract_inverted_index.economic | 10 |
| abstract_inverted_index.explored | 168 |
| abstract_inverted_index.nematode | 199 |
| abstract_inverted_index.proposed | 186 |
| abstract_inverted_index.required | 22 |
| abstract_inverted_index.resulted | 129 |
| abstract_inverted_index.supports | 188 |
| abstract_inverted_index.versions | 35 |
| abstract_inverted_index.Precision | 54, 77 |
| abstract_inverted_index.Root-knot | 0 |
| abstract_inverted_index.addition, | 165 |
| abstract_inverted_index.different | 181 |
| abstract_inverted_index.effective | 24 |
| abstract_inverted_index.framework | 187 |
| abstract_inverted_index.implement | 198 |
| abstract_inverted_index.increased | 75 |
| abstract_inverted_index.necessary | 196 |
| abstract_inverted_index.nematodes | 1, 126, 195 |
| abstract_inverted_index.objective | 182 |
| abstract_inverted_index.parasites | 6 |
| abstract_inverted_index.parasitic | 194 |
| abstract_inverted_index.variation | 120 |
| abstract_inverted_index.YOLOv5-608 | 51, 90 |
| abstract_inverted_index.YOLOv7-608 | 141 |
| abstract_inverted_index.assessment | 17, 191 |
| abstract_inverted_index.management | 25, 205 |
| abstract_inverted_index.overlapped | 152 |
| abstract_inverted_index.practices. | 206 |
| abstract_inverted_index.strategies | 201 |
| abstract_inverted_index.application | 44, 171 |
| abstract_inverted_index.coefficient | 104, 118 |
| abstract_inverted_index.correlation | 95, 145 |
| abstract_inverted_index.enumeration | 47 |
| abstract_inverted_index.free-living | 125 |
| abstract_inverted_index.microscopic | 4, 49, 177 |
| abstract_inverted_index.populations | 20 |
| abstract_inverted_index.significant | 9 |
| abstract_inverted_index.vegetables. | 15 |
| abstract_inverted_index.augmentation | 174 |
| abstract_inverted_index.investigated | 41 |
| abstract_inverted_index.architectures | 39 |
| abstract_inverted_index.augmentation. | 69 |
| abstract_inverted_index.determination | 106 |
| abstract_inverted_index.magnifications. | 184 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5036202905 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I74899385 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.97586616 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |