Detection of Atrial Fibrillation Using a Ring-Type Wearable Device (CardioTracker) and Deep Learning Analysis of Photoplethysmography Signals: Prospective Observational Proof-of-Concept Study (Preprint) Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.2196/preprints.16443
BACKGROUND Continuous photoplethysmography (PPG) monitoring with a wearable device may aid the early detection of atrial fibrillation (AF). OBJECTIVE We aimed to evaluate the diagnostic performance of a ring-type wearable device (CardioTracker, CART), which can detect AF using deep learning analysis of PPG signals. METHODS Patients with persistent AF who underwent cardioversion were recruited prospectively. We recorded PPG signals at the finger with CART and a conventional pulse oximeter before and after cardioversion over a period of 15 min (each instrument). Cardiologists validated the PPG rhythms with simultaneous single-lead electrocardiography. The PPG data were transmitted to a smartphone wirelessly and analyzed with a deep learning algorithm. We also validated the deep learning algorithm in 20 healthy subjects with sinus rhythm (SR). RESULTS In 100 study participants, CART generated a total of 13,038 30-s PPG samples (5850 for SR and 7188 for AF). Using the deep learning algorithm, the diagnostic accuracy, sensitivity, specificity, positive-predictive value, and negative-predictive value were 96.9%, 99.0%, 94.3%, 95.6%, and 98.7%, respectively. Although the diagnostic accuracy decreased with shorter sample lengths, the accuracy was maintained at 94.7% with 10-s measurements. For SR, the specificity decreased with higher variability of peak-to-peak intervals. However, for AF, CART maintained consistent sensitivity regardless of variability. Pulse rates had a lower impact on sensitivity than on specificity. The performance of CART was comparable to that of the conventional device when using a proper threshold. External validation showed that 94.99% (16,529/17,400) of the PPG samples from the control group were correctly identified with SR. CONCLUSIONS A ring-type wearable device with deep learning analysis of PPG signals could accurately diagnose AF without relying on electrocardiography. With this device, continuous monitoring for AF may be promising in high-risk populations. CLINICALTRIAL ClinicalTrials.gov NCT04023188; https://clinicaltrials.gov/ct2/show/NCT04023188
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.2196/preprints.16443
- OA Status
- gold
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4254574479
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4254574479Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2196/preprints.16443Digital Object Identifier
- Title
-
Detection of Atrial Fibrillation Using a Ring-Type Wearable Device (CardioTracker) and Deep Learning Analysis of Photoplethysmography Signals: Prospective Observational Proof-of-Concept Study (Preprint)Work title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-09-30Full publication date if available
- Authors
-
Soonil Kwon, Joonki Hong, Eue‐Keun Choi, Byunghwan Lee, Changhyun Baik, Euijae Lee, Eui–Rim Jeong, Bon‐Kwon Koo, Seil Oh, Yung YiList of authors in order
- Landing page
-
https://doi.org/10.2196/preprints.16443Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2196/preprints.16443Direct OA link when available
- Concepts
-
Photoplethysmogram, Atrial fibrillation, Medicine, Wearable computer, Cart, Sinus rhythm, Cardiology, Cardioversion, Internal medicine, Wearable technology, Electrocardiography, Pulse (music), Prospective cohort study, Artificial intelligence, Computer science, Computer vision, Telecommunications, Engineering, Detector, Filter (signal processing), Mechanical engineering, Embedded systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4254574479 |
|---|---|
| doi | https://doi.org/10.2196/preprints.16443 |
| ids.doi | https://doi.org/10.2196/preprints.16443 |
| ids.openalex | https://openalex.org/W4254574479 |
| fwci | 0.0 |
| type | preprint |
| title | Detection of Atrial Fibrillation Using a Ring-Type Wearable Device (CardioTracker) and Deep Learning Analysis of Photoplethysmography Signals: Prospective Observational Proof-of-Concept Study (Preprint) |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11196 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Non-Invasive Vital Sign Monitoring |
| topics[1].id | https://openalex.org/T10745 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2705 |
| topics[1].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[1].display_name | Heart Rate Variability and Autonomic Control |
| topics[2].id | https://openalex.org/T11021 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9975000023841858 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | ECG Monitoring and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C116390426 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8229529857635498 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7187885 |
| concepts[0].display_name | Photoplethysmogram |
| concepts[1].id | https://openalex.org/C2779161974 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7268326878547668 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q815819 |
| concepts[1].display_name | Atrial fibrillation |
| concepts[2].id | https://openalex.org/C71924100 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6830776929855347 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[2].display_name | Medicine |
| concepts[3].id | https://openalex.org/C150594956 |
| concepts[3].level | 2 |
| concepts[3].score | 0.59026700258255 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1334829 |
| concepts[3].display_name | Wearable computer |
| concepts[4].id | https://openalex.org/C2777275308 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5827417373657227 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q234668 |
| concepts[4].display_name | Cart |
| concepts[5].id | https://openalex.org/C2775914520 |
| concepts[5].level | 3 |
| concepts[5].score | 0.48302826285362244 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12335414 |
| concepts[5].display_name | Sinus rhythm |
| concepts[6].id | https://openalex.org/C164705383 |
| concepts[6].level | 1 |
| concepts[6].score | 0.47708043456077576 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[6].display_name | Cardiology |
| concepts[7].id | https://openalex.org/C2777289489 |
| concepts[7].level | 3 |
| concepts[7].score | 0.47419625520706177 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1729126 |
| concepts[7].display_name | Cardioversion |
| concepts[8].id | https://openalex.org/C126322002 |
| concepts[8].level | 1 |
| concepts[8].score | 0.46121135354042053 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[8].display_name | Internal medicine |
| concepts[9].id | https://openalex.org/C54290928 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4444597363471985 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q4845080 |
| concepts[9].display_name | Wearable technology |
| concepts[10].id | https://openalex.org/C2780040984 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4375951290130615 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q79785 |
| concepts[10].display_name | Electrocardiography |
| concepts[11].id | https://openalex.org/C2780167933 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4170013666152954 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1550652 |
| concepts[11].display_name | Pulse (music) |
| concepts[12].id | https://openalex.org/C188816634 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4167514443397522 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2113324 |
| concepts[12].display_name | Prospective cohort study |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3557727336883545 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C41008148 |
| concepts[14].level | 0 |
| concepts[14].score | 0.23282012343406677 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[14].display_name | Computer science |
| concepts[15].id | https://openalex.org/C31972630 |
| concepts[15].level | 1 |
| concepts[15].score | 0.09677278995513916 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[15].display_name | Computer vision |
| concepts[16].id | https://openalex.org/C76155785 |
| concepts[16].level | 1 |
| concepts[16].score | 0.075859934091568 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[16].display_name | Telecommunications |
| concepts[17].id | https://openalex.org/C127413603 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[17].display_name | Engineering |
| concepts[18].id | https://openalex.org/C94915269 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[18].display_name | Detector |
| concepts[19].id | https://openalex.org/C106131492 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[19].display_name | Filter (signal processing) |
| concepts[20].id | https://openalex.org/C78519656 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[20].display_name | Mechanical engineering |
| concepts[21].id | https://openalex.org/C149635348 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[21].display_name | Embedded system |
| keywords[0].id | https://openalex.org/keywords/photoplethysmogram |
| keywords[0].score | 0.8229529857635498 |
| keywords[0].display_name | Photoplethysmogram |
| keywords[1].id | https://openalex.org/keywords/atrial-fibrillation |
| keywords[1].score | 0.7268326878547668 |
| keywords[1].display_name | Atrial fibrillation |
| keywords[2].id | https://openalex.org/keywords/medicine |
| keywords[2].score | 0.6830776929855347 |
| keywords[2].display_name | Medicine |
| keywords[3].id | https://openalex.org/keywords/wearable-computer |
| keywords[3].score | 0.59026700258255 |
| keywords[3].display_name | Wearable computer |
| keywords[4].id | https://openalex.org/keywords/cart |
| keywords[4].score | 0.5827417373657227 |
| keywords[4].display_name | Cart |
| keywords[5].id | https://openalex.org/keywords/sinus-rhythm |
| keywords[5].score | 0.48302826285362244 |
| keywords[5].display_name | Sinus rhythm |
| keywords[6].id | https://openalex.org/keywords/cardiology |
| keywords[6].score | 0.47708043456077576 |
| keywords[6].display_name | Cardiology |
| keywords[7].id | https://openalex.org/keywords/cardioversion |
| keywords[7].score | 0.47419625520706177 |
| keywords[7].display_name | Cardioversion |
| keywords[8].id | https://openalex.org/keywords/internal-medicine |
| keywords[8].score | 0.46121135354042053 |
| keywords[8].display_name | Internal medicine |
| keywords[9].id | https://openalex.org/keywords/wearable-technology |
| keywords[9].score | 0.4444597363471985 |
| keywords[9].display_name | Wearable technology |
| keywords[10].id | https://openalex.org/keywords/electrocardiography |
| keywords[10].score | 0.4375951290130615 |
| keywords[10].display_name | Electrocardiography |
| keywords[11].id | https://openalex.org/keywords/pulse |
| keywords[11].score | 0.4170013666152954 |
| keywords[11].display_name | Pulse (music) |
| keywords[12].id | https://openalex.org/keywords/prospective-cohort-study |
| keywords[12].score | 0.4167514443397522 |
| keywords[12].display_name | Prospective cohort study |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.3557727336883545 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/computer-science |
| keywords[14].score | 0.23282012343406677 |
| keywords[14].display_name | Computer science |
| keywords[15].id | https://openalex.org/keywords/computer-vision |
| keywords[15].score | 0.09677278995513916 |
| keywords[15].display_name | Computer vision |
| keywords[16].id | https://openalex.org/keywords/telecommunications |
| keywords[16].score | 0.075859934091568 |
| keywords[16].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.2196/preprints.16443 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2196/preprints.16443 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5067107785 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4791-6855 |
| authorships[0].author.display_name | Soonil Kwon |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2802835388 |
| authorships[0].affiliations[0].raw_affiliation_string | Seoul National University Hospital, Seoul, Republic of Korea |
| authorships[0].institutions[0].id | https://openalex.org/I2802835388 |
| authorships[0].institutions[0].ror | https://ror.org/01z4nnt86 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I2802835388 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Seoul National University Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Soonil Kwon |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Seoul National University Hospital, Seoul, Republic of Korea |
| authorships[1].author.id | https://openalex.org/A5063978604 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8378-3332 |
| authorships[1].author.display_name | Joonki Hong |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I157485424 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea |
| authorships[1].institutions[0].id | https://openalex.org/I157485424 |
| authorships[1].institutions[0].ror | https://ror.org/05apxxy63 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I157485424 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Korea Advanced Institute of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Joonki Hong |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea |
| authorships[2].author.id | https://openalex.org/A5028120987 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0411-6372 |
| authorships[2].author.display_name | Eue‐Keun Choi |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2802835388 |
| authorships[2].affiliations[0].raw_affiliation_string | Seoul National University Hospital, Seoul, Republic of Korea |
| authorships[2].institutions[0].id | https://openalex.org/I2802835388 |
| authorships[2].institutions[0].ror | https://ror.org/01z4nnt86 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I2802835388 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Seoul National University Hospital |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Eue-Keun Choi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Seoul National University Hospital, Seoul, Republic of Korea |
| authorships[3].author.id | https://openalex.org/A5103069017 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1930-6926 |
| authorships[3].author.display_name | Byunghwan Lee |
| authorships[3].affiliations[0].raw_affiliation_string | Sky Labs Inc, Seongnam, Republic of Korea |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Byunghwan Lee |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Sky Labs Inc, Seongnam, Republic of Korea |
| authorships[4].author.id | https://openalex.org/A5078159093 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4002-0407 |
| authorships[4].author.display_name | Changhyun Baik |
| authorships[4].affiliations[0].raw_affiliation_string | Sky Labs Inc, Seongnam, Republic of Korea |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Changhyun Baik |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Sky Labs Inc, Seongnam, Republic of Korea |
| authorships[5].author.id | https://openalex.org/A5102008551 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8735-5474 |
| authorships[5].author.display_name | Euijae Lee |
| authorships[5].countries | KR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I2802835388 |
| authorships[5].affiliations[0].raw_affiliation_string | Seoul National University Hospital, Seoul, Republic of Korea |
| authorships[5].institutions[0].id | https://openalex.org/I2802835388 |
| authorships[5].institutions[0].ror | https://ror.org/01z4nnt86 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I2802835388 |
| authorships[5].institutions[0].country_code | KR |
| authorships[5].institutions[0].display_name | Seoul National University Hospital |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Euijae Lee |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Seoul National University Hospital, Seoul, Republic of Korea |
| authorships[6].author.id | https://openalex.org/A5063537923 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8708-6235 |
| authorships[6].author.display_name | Eui–Rim Jeong |
| authorships[6].countries | KR |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I145808223 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Information and Communication Engineering, Hanbat National University, Daejeon, Republic of Korea |
| authorships[6].institutions[0].id | https://openalex.org/I145808223 |
| authorships[6].institutions[0].ror | https://ror.org/00x514t95 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I145808223 |
| authorships[6].institutions[0].country_code | KR |
| authorships[6].institutions[0].display_name | Hanbat National University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Eui-Rim Jeong |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Information and Communication Engineering, Hanbat National University, Daejeon, Republic of Korea |
| authorships[7].author.id | https://openalex.org/A5071496674 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-8188-3348 |
| authorships[7].author.display_name | Bon‐Kwon Koo |
| authorships[7].countries | KR |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I2802835388 |
| authorships[7].affiliations[0].raw_affiliation_string | Seoul National University Hospital, Seoul, Republic of Korea |
| authorships[7].institutions[0].id | https://openalex.org/I2802835388 |
| authorships[7].institutions[0].ror | https://ror.org/01z4nnt86 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I2802835388 |
| authorships[7].institutions[0].country_code | KR |
| authorships[7].institutions[0].display_name | Seoul National University Hospital |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Bon-Kwon Koo |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Seoul National University Hospital, Seoul, Republic of Korea |
| authorships[8].author.id | https://openalex.org/A5043881451 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-2504-9615 |
| authorships[8].author.display_name | Seil Oh |
| authorships[8].countries | KR |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I2802835388 |
| authorships[8].affiliations[0].raw_affiliation_string | Seoul National University Hospital, Seoul, Republic of Korea |
| authorships[8].institutions[0].id | https://openalex.org/I2802835388 |
| authorships[8].institutions[0].ror | https://ror.org/01z4nnt86 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I2802835388 |
| authorships[8].institutions[0].country_code | KR |
| authorships[8].institutions[0].display_name | Seoul National University Hospital |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Seil Oh |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Seoul National University Hospital, Seoul, Republic of Korea |
| authorships[9].author.id | https://openalex.org/A5037245619 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-6955-3135 |
| authorships[9].author.display_name | Yung Yi |
| authorships[9].countries | KR |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I157485424 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea |
| authorships[9].institutions[0].id | https://openalex.org/I157485424 |
| authorships[9].institutions[0].ror | https://ror.org/05apxxy63 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I157485424 |
| authorships[9].institutions[0].country_code | KR |
| authorships[9].institutions[0].display_name | Korea Advanced Institute of Science and Technology |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Yung Yi |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2196/preprints.16443 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detection of Atrial Fibrillation Using a Ring-Type Wearable Device (CardioTracker) and Deep Learning Analysis of Photoplethysmography Signals: Prospective Observational Proof-of-Concept Study (Preprint) |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11196 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Non-Invasive Vital Sign Monitoring |
| related_works | https://openalex.org/W2561302380, https://openalex.org/W2035721221, https://openalex.org/W313311422, https://openalex.org/W1968320979, https://openalex.org/W2004038647, https://openalex.org/W1984293993, https://openalex.org/W1987893825, https://openalex.org/W1981070043, https://openalex.org/W4285196140, https://openalex.org/W4317915313 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2196/preprints.16443 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2196/preprints.16443 |
| primary_location.id | doi:10.2196/preprints.16443 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2196/preprints.16443 |
| publication_date | 2019-09-30 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2588060701, https://openalex.org/W2159975225, https://openalex.org/W2546945924, https://openalex.org/W2194176361, https://openalex.org/W2887443020, https://openalex.org/W2922356523, https://openalex.org/W2331708718, https://openalex.org/W2796199091, https://openalex.org/W2506102335, https://openalex.org/W2749369527, https://openalex.org/W1929178729, https://openalex.org/W2890046404, https://openalex.org/W2942975361, https://openalex.org/W1976734044, https://openalex.org/W2919598938, https://openalex.org/W2618530766, https://openalex.org/W1988681682, https://openalex.org/W2963125010, https://openalex.org/W1596717185, https://openalex.org/W2806930130, https://openalex.org/W2610530391, https://openalex.org/W2612343760, https://openalex.org/W2582174372, https://openalex.org/W2162602376, https://openalex.org/W2951008626, https://openalex.org/W2790444357, https://openalex.org/W2902001060 |
| referenced_works_count | 27 |
| abstract_inverted_index.A | 261 |
| abstract_inverted_index.a | 7, 30, 70, 79, 101, 107, 135, 214, 236 |
| abstract_inverted_index.15 | 82 |
| abstract_inverted_index.20 | 119 |
| abstract_inverted_index.AF | 39, 53, 275, 286 |
| abstract_inverted_index.In | 129 |
| abstract_inverted_index.SR | 144 |
| abstract_inverted_index.We | 22, 60, 111 |
| abstract_inverted_index.at | 64, 185 |
| abstract_inverted_index.be | 288 |
| abstract_inverted_index.in | 118, 290 |
| abstract_inverted_index.of | 15, 29, 44, 81, 137, 198, 209, 224, 230, 245, 269 |
| abstract_inverted_index.on | 217, 220, 278 |
| abstract_inverted_index.to | 24, 100, 228 |
| abstract_inverted_index.100 | 130 |
| abstract_inverted_index.AF, | 203 |
| abstract_inverted_index.For | 190 |
| abstract_inverted_index.PPG | 45, 62, 89, 96, 140, 247, 270 |
| abstract_inverted_index.SR, | 191 |
| abstract_inverted_index.SR. | 257 |
| abstract_inverted_index.The | 95, 222 |
| abstract_inverted_index.aid | 11 |
| abstract_inverted_index.and | 69, 75, 104, 145, 161, 169 |
| abstract_inverted_index.can | 37 |
| abstract_inverted_index.for | 143, 147, 202, 285 |
| abstract_inverted_index.had | 213 |
| abstract_inverted_index.may | 10, 287 |
| abstract_inverted_index.min | 83 |
| abstract_inverted_index.the | 12, 26, 65, 88, 114, 150, 154, 173, 181, 192, 231, 246, 250 |
| abstract_inverted_index.was | 183, 226 |
| abstract_inverted_index.who | 54 |
| abstract_inverted_index.10-s | 188 |
| abstract_inverted_index.30-s | 139 |
| abstract_inverted_index.7188 | 146 |
| abstract_inverted_index.AF). | 148 |
| abstract_inverted_index.CART | 68, 133, 204, 225 |
| abstract_inverted_index.With | 280 |
| abstract_inverted_index.also | 112 |
| abstract_inverted_index.data | 97 |
| abstract_inverted_index.deep | 41, 108, 115, 151, 266 |
| abstract_inverted_index.from | 249 |
| abstract_inverted_index.over | 78 |
| abstract_inverted_index.than | 219 |
| abstract_inverted_index.that | 229, 242 |
| abstract_inverted_index.this | 281 |
| abstract_inverted_index.were | 57, 98, 164, 253 |
| abstract_inverted_index.when | 234 |
| abstract_inverted_index.with | 6, 51, 67, 91, 106, 122, 177, 187, 195, 256, 265 |
| abstract_inverted_index.(5850 | 142 |
| abstract_inverted_index.(AF). | 18 |
| abstract_inverted_index.(PPG) | 4 |
| abstract_inverted_index.(SR). | 125 |
| abstract_inverted_index.(each | 84 |
| abstract_inverted_index.94.7% | 186 |
| abstract_inverted_index.<sec> | 0, 20, 48, 127, 259, 294 |
| abstract_inverted_index.Pulse | 211 |
| abstract_inverted_index.Using | 149 |
| abstract_inverted_index.after | 76 |
| abstract_inverted_index.aimed | 23 |
| abstract_inverted_index.could | 272 |
| abstract_inverted_index.early | 13 |
| abstract_inverted_index.group | 252 |
| abstract_inverted_index.lower | 215 |
| abstract_inverted_index.pulse | 72 |
| abstract_inverted_index.rates | 212 |
| abstract_inverted_index.sinus | 123 |
| abstract_inverted_index.study | 131 |
| abstract_inverted_index.total | 136 |
| abstract_inverted_index.using | 40, 235 |
| abstract_inverted_index.value | 163 |
| abstract_inverted_index.which | 36 |
| abstract_inverted_index.13,038 | 138 |
| abstract_inverted_index.94.3%, | 167 |
| abstract_inverted_index.94.99% | 243 |
| abstract_inverted_index.95.6%, | 168 |
| abstract_inverted_index.96.9%, | 165 |
| abstract_inverted_index.98.7%, | 170 |
| abstract_inverted_index.99.0%, | 166 |
| abstract_inverted_index.</sec> | 19, 47, 126, 258, 293, 299 |
| abstract_inverted_index.CART), | 35 |
| abstract_inverted_index.atrial | 16 |
| abstract_inverted_index.before | 74 |
| abstract_inverted_index.detect | 38 |
| abstract_inverted_index.device | 9, 33, 233, 264 |
| abstract_inverted_index.finger | 66 |
| abstract_inverted_index.higher | 196 |
| abstract_inverted_index.impact | 216 |
| abstract_inverted_index.period | 80 |
| abstract_inverted_index.proper | 237 |
| abstract_inverted_index.rhythm | 124 |
| abstract_inverted_index.sample | 179 |
| abstract_inverted_index.showed | 241 |
| abstract_inverted_index.value, | 160 |
| abstract_inverted_index.control | 251 |
| abstract_inverted_index.device, | 282 |
| abstract_inverted_index.healthy | 120 |
| abstract_inverted_index.relying | 277 |
| abstract_inverted_index.rhythms | 90 |
| abstract_inverted_index.samples | 141, 248 |
| abstract_inverted_index.shorter | 178 |
| abstract_inverted_index.signals | 63, 271 |
| abstract_inverted_index.without | 276 |
| abstract_inverted_index.Although | 172 |
| abstract_inverted_index.External | 239 |
| abstract_inverted_index.However, | 201 |
| abstract_inverted_index.Patients | 50 |
| abstract_inverted_index.accuracy | 175, 182 |
| abstract_inverted_index.analysis | 43, 268 |
| abstract_inverted_index.analyzed | 105 |
| abstract_inverted_index.diagnose | 274 |
| abstract_inverted_index.evaluate | 25 |
| abstract_inverted_index.learning | 42, 109, 116, 152, 267 |
| abstract_inverted_index.lengths, | 180 |
| abstract_inverted_index.oximeter | 73 |
| abstract_inverted_index.recorded | 61 |
| abstract_inverted_index.signals. | 46 |
| abstract_inverted_index.subjects | 121 |
| abstract_inverted_index.wearable | 8, 32, 263 |
| abstract_inverted_index.accuracy, | 156 |
| abstract_inverted_index.algorithm | 117 |
| abstract_inverted_index.correctly | 254 |
| abstract_inverted_index.decreased | 176, 194 |
| abstract_inverted_index.detection | 14 |
| abstract_inverted_index.generated | 134 |
| abstract_inverted_index.high-risk | 291 |
| abstract_inverted_index.promising | 289 |
| abstract_inverted_index.recruited | 58 |
| abstract_inverted_index.ring-type | 31, 262 |
| abstract_inverted_index.underwent | 55 |
| abstract_inverted_index.validated | 87, 113 |
| abstract_inverted_index.Continuous | 2 |
| abstract_inverted_index.accurately | 273 |
| abstract_inverted_index.algorithm, | 153 |
| abstract_inverted_index.algorithm. | 110 |
| abstract_inverted_index.comparable | 227 |
| abstract_inverted_index.consistent | 206 |
| abstract_inverted_index.continuous | 283 |
| abstract_inverted_index.diagnostic | 27, 155, 174 |
| abstract_inverted_index.identified | 255 |
| abstract_inverted_index.intervals. | 200 |
| abstract_inverted_index.maintained | 184, 205 |
| abstract_inverted_index.monitoring | 5, 284 |
| abstract_inverted_index.persistent | 52 |
| abstract_inverted_index.regardless | 208 |
| abstract_inverted_index.smartphone | 102 |
| abstract_inverted_index.threshold. | 238 |
| abstract_inverted_index.validation | 240 |
| abstract_inverted_index.wirelessly | 103 |
| abstract_inverted_index.performance | 28, 223 |
| abstract_inverted_index.sensitivity | 207, 218 |
| abstract_inverted_index.single-lead | 93 |
| abstract_inverted_index.specificity | 193 |
| abstract_inverted_index.transmitted | 99 |
| abstract_inverted_index.variability | 197 |
| abstract_inverted_index.NCT04023188; | 297 |
| abstract_inverted_index.conventional | 71, 232 |
| abstract_inverted_index.fibrillation | 17 |
| abstract_inverted_index.instrument). | 85 |
| abstract_inverted_index.peak-to-peak | 199 |
| abstract_inverted_index.populations. | 292 |
| abstract_inverted_index.sensitivity, | 157 |
| abstract_inverted_index.simultaneous | 92 |
| abstract_inverted_index.specificity, | 158 |
| abstract_inverted_index.specificity. | 221 |
| abstract_inverted_index.variability. | 210 |
| abstract_inverted_index.Cardiologists | 86 |
| abstract_inverted_index.cardioversion | 56, 77 |
| abstract_inverted_index.measurements. | 189 |
| abstract_inverted_index.participants, | 132 |
| abstract_inverted_index.respectively. | 171 |
| abstract_inverted_index.prospectively. | 59 |
| abstract_inverted_index.(16,529/17,400) | 244 |
| abstract_inverted_index.(CardioTracker, | 34 |
| abstract_inverted_index.ClinicalTrials.gov | 296 |
| abstract_inverted_index.negative-predictive | 162 |
| abstract_inverted_index.positive-predictive | 159 |
| abstract_inverted_index.electrocardiography. | 94, 279 |
| abstract_inverted_index.photoplethysmography | 3 |
| abstract_inverted_index.<title>METHODS</title> | 49 |
| abstract_inverted_index.<title>RESULTS</title> | 128 |
| abstract_inverted_index.<title>OBJECTIVE</title> | 21 |
| abstract_inverted_index.<title>BACKGROUND</title> | 1 |
| abstract_inverted_index.<title>CONCLUSIONS</title> | 260 |
| abstract_inverted_index.<title>CLINICALTRIAL</title> | 295 |
| abstract_inverted_index.https://clinicaltrials.gov/ct2/show/NCT04023188 | 298 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 10 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.26905546 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |