Detection of concha bullosa using deep learning models in cone-beam computed tomography images: a feasibility study Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.7181/acfs.2024.00283
Background: Pneumatization of turbinates, also known as concha bullosa (CB), is associated with nasal septal deviation and sinonasal pathologies. This study aims to evaluate the performance of deep learning models in detecting CB in coronal cone-beam computed tomography (CBCT) images.Methods: Standardized coronal images were obtained from 203 CBCT scans (83 with CB and 119 without CB) from the radiology archives of a dental teaching hospital. These scans underwent preprocessing through a hybridized contrast enhancement (CE) method using discrete wavelet transform (DWT). Of the 203 CBCT images, 162 were randomly assigned to the training set and 41 to the testing set. Initially, the images were enhanced using a CE technique before being input into pre-trained deep learning models, namely ResNet50, ResNet101, and MobileNet. The features extracted by each model were then flattened and input into a random forest (RF) classifier. In the subsequent phase, the CE technique was refined by incorporating DWT.Results: CE-DWT-ResNet101-RF demonstrated the highest performance, achieving an accuracy of 91.7% and an area under the curve (AUC) of 98%. In contrast, CE-MobileNet-RF recorded the lowest accuracy at 82.46% and an AUC of 92%. The highest precision, recall, and F1 score (all 92%) were observed for CE-DWT-ResNet101-RF.Conclusion: Deep learning models demonstrated high accuracy in detecting CB in CBCT images. However, to confirm these results, further studies involving larger sample sizes and various deep learning models are required.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.7181/acfs.2024.00283
- OA Status
- diamond
- Cited By
- 4
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408009233
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408009233Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.7181/acfs.2024.00283Digital Object Identifier
- Title
-
Detection of concha bullosa using deep learning models in cone-beam computed tomography images: a feasibility studyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-20Full publication date if available
- Authors
-
Shishir Shetty, Auwalu Saleh Mubarak, Leena R. David, Mhd Omar Al Jouhari, Wael Talaat, Sausan Al Kawas, Natheer Al‐Rawi, Sunaina Shetty Yadadi, Mamatha Shetty, Dilber Uzun OzsahinList of authors in order
- Landing page
-
https://doi.org/10.7181/acfs.2024.00283Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.7181/acfs.2024.00283Direct OA link when available
- Concepts
-
Concha bullosa, Medicine, Cone beam computed tomography, Computed tomography, Cone (formal languages), Radiology, Artificial intelligence, Algorithm, Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408009233 |
|---|---|
| doi | https://doi.org/10.7181/acfs.2024.00283 |
| ids.doi | https://doi.org/10.7181/acfs.2024.00283 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40068625 |
| ids.openalex | https://openalex.org/W4408009233 |
| fwci | 19.27898059 |
| type | article |
| title | Detection of concha bullosa using deep learning models in cone-beam computed tomography images: a feasibility study |
| biblio.issue | 1 |
| biblio.volume | 26 |
| biblio.last_page | 28 |
| biblio.first_page | 19 |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T11363 |
| topics[1].field.id | https://openalex.org/fields/35 |
| topics[1].field.display_name | Dentistry |
| topics[1].score | 0.996399998664856 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3504 |
| topics[1].subfield.display_name | Oral Surgery |
| topics[1].display_name | Dental Radiography and Imaging |
| topics[2].id | https://openalex.org/T12422 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.983299970626831 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiomics and Machine Learning in Medical Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2910858186 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8910332918167114 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5158611 |
| concepts[0].display_name | Concha bullosa |
| concepts[1].id | https://openalex.org/C71924100 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8697154521942139 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[1].display_name | Medicine |
| concepts[2].id | https://openalex.org/C2779813781 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7175276279449463 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1224951 |
| concepts[2].display_name | Cone beam computed tomography |
| concepts[3].id | https://openalex.org/C544519230 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6358579397201538 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q32566 |
| concepts[3].display_name | Computed tomography |
| concepts[4].id | https://openalex.org/C30014739 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4173120856285095 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5159445 |
| concepts[4].display_name | Cone (formal languages) |
| concepts[5].id | https://openalex.org/C126838900 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3739628791809082 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[5].display_name | Radiology |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.35264602303504944 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.06175637245178223 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/concha-bullosa |
| keywords[0].score | 0.8910332918167114 |
| keywords[0].display_name | Concha bullosa |
| keywords[1].id | https://openalex.org/keywords/medicine |
| keywords[1].score | 0.8697154521942139 |
| keywords[1].display_name | Medicine |
| keywords[2].id | https://openalex.org/keywords/cone-beam-computed-tomography |
| keywords[2].score | 0.7175276279449463 |
| keywords[2].display_name | Cone beam computed tomography |
| keywords[3].id | https://openalex.org/keywords/computed-tomography |
| keywords[3].score | 0.6358579397201538 |
| keywords[3].display_name | Computed tomography |
| keywords[4].id | https://openalex.org/keywords/cone |
| keywords[4].score | 0.4173120856285095 |
| keywords[4].display_name | Cone (formal languages) |
| keywords[5].id | https://openalex.org/keywords/radiology |
| keywords[5].score | 0.3739628791809082 |
| keywords[5].display_name | Radiology |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.35264602303504944 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.06175637245178223 |
| keywords[7].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.7181/acfs.2024.00283 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2765001114 |
| locations[0].source.issn | 2287-1152, 2287-5603 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2287-1152 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Archives of Craniofacial Surgery |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Archives of Craniofacial Surgery |
| locations[0].landing_page_url | https://doi.org/10.7181/acfs.2024.00283 |
| locations[1].id | pmid:40068625 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Archives of craniofacial surgery |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40068625 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11917413 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Arch Craniofac Surg |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11917413 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5012577791 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8097-6024 |
| authorships[0].author.display_name | Shishir Shetty |
| authorships[0].countries | AE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I29891158 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates. |
| authorships[0].institutions[0].id | https://openalex.org/I29891158 |
| authorships[0].institutions[0].ror | https://ror.org/00engpz63 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I29891158 |
| authorships[0].institutions[0].country_code | AE |
| authorships[0].institutions[0].display_name | University of Sharjah |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shishir Shetty |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates. |
| authorships[1].author.id | https://openalex.org/A5013532128 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6240-1684 |
| authorships[1].author.display_name | Auwalu Saleh Mubarak |
| authorships[1].countries | CY |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I69050122 |
| authorships[1].affiliations[0].raw_affiliation_string | Operational Research Center in Healthcare, Near East University, Nicosia, Turkey. |
| authorships[1].institutions[0].id | https://openalex.org/I69050122 |
| authorships[1].institutions[0].ror | https://ror.org/02x8svs93 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I69050122 |
| authorships[1].institutions[0].country_code | CY |
| authorships[1].institutions[0].display_name | Near East University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Auwalu Saleh Mubarak |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Operational Research Center in Healthcare, Near East University, Nicosia, Turkey. |
| authorships[2].author.id | https://openalex.org/A5058981128 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5604-4764 |
| authorships[2].author.display_name | Leena R. David |
| authorships[2].countries | AE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I29891158 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates. |
| authorships[2].institutions[0].id | https://openalex.org/I29891158 |
| authorships[2].institutions[0].ror | https://ror.org/00engpz63 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I29891158 |
| authorships[2].institutions[0].country_code | AE |
| authorships[2].institutions[0].display_name | University of Sharjah |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Leena R David |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates. |
| authorships[3].author.id | https://openalex.org/A5106956853 |
| authorships[3].author.orcid | https://orcid.org/0009-0001-6651-6080 |
| authorships[3].author.display_name | Mhd Omar Al Jouhari |
| authorships[3].countries | AE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I29891158 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates. |
| authorships[3].institutions[0].id | https://openalex.org/I29891158 |
| authorships[3].institutions[0].ror | https://ror.org/00engpz63 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I29891158 |
| authorships[3].institutions[0].country_code | AE |
| authorships[3].institutions[0].display_name | University of Sharjah |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mhd Omar Al Jouhari |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates. |
| authorships[4].author.id | https://openalex.org/A5043156240 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5784-3784 |
| authorships[4].author.display_name | Wael Talaat |
| authorships[4].countries | AE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I29891158 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates. |
| authorships[4].institutions[0].id | https://openalex.org/I29891158 |
| authorships[4].institutions[0].ror | https://ror.org/00engpz63 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I29891158 |
| authorships[4].institutions[0].country_code | AE |
| authorships[4].institutions[0].display_name | University of Sharjah |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wael Talaat |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates. |
| authorships[5].author.id | https://openalex.org/A5022887661 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6118-4382 |
| authorships[5].author.display_name | Sausan Al Kawas |
| authorships[5].countries | AE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I29891158 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates. |
| authorships[5].institutions[0].id | https://openalex.org/I29891158 |
| authorships[5].institutions[0].ror | https://ror.org/00engpz63 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I29891158 |
| authorships[5].institutions[0].country_code | AE |
| authorships[5].institutions[0].display_name | University of Sharjah |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sausan Al Kawas |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates. |
| authorships[6].author.id | https://openalex.org/A5083079250 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7483-6594 |
| authorships[6].author.display_name | Natheer Al‐Rawi |
| authorships[6].countries | AE |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I29891158 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates. |
| authorships[6].institutions[0].id | https://openalex.org/I29891158 |
| authorships[6].institutions[0].ror | https://ror.org/00engpz63 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I29891158 |
| authorships[6].institutions[0].country_code | AE |
| authorships[6].institutions[0].display_name | University of Sharjah |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Natheer Al-Rawi |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates. |
| authorships[7].author.id | https://openalex.org/A5059413961 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-7616-4840 |
| authorships[7].author.display_name | Sunaina Shetty Yadadi |
| authorships[7].countries | AE |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I29891158 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates. |
| authorships[7].institutions[0].id | https://openalex.org/I29891158 |
| authorships[7].institutions[0].ror | https://ror.org/00engpz63 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I29891158 |
| authorships[7].institutions[0].country_code | AE |
| authorships[7].institutions[0].display_name | University of Sharjah |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Sunaina Shetty |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates. |
| authorships[8].author.id | https://openalex.org/A5029655685 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-1092-0639 |
| authorships[8].author.display_name | Mamatha Shetty |
| authorships[8].countries | IN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I1333540553 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Periodontics A. B. Shetty Memorial Institute of Dental Sciences, Nitte (Deemed to be University), Mangalore, India. |
| authorships[8].institutions[0].id | https://openalex.org/I1333540553 |
| authorships[8].institutions[0].ror | https://ror.org/029nydt37 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I1333540553 |
| authorships[8].institutions[0].country_code | IN |
| authorships[8].institutions[0].display_name | Nitte University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Mamatha Shetty |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Periodontics A. B. Shetty Memorial Institute of Dental Sciences, Nitte (Deemed to be University), Mangalore, India. |
| authorships[9].author.id | https://openalex.org/A5071225279 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-3873-1410 |
| authorships[9].author.display_name | Dilber Uzun Ozsahin |
| authorships[9].countries | AE, CY |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I69050122 |
| authorships[9].affiliations[0].raw_affiliation_string | Operational Research Center in Healthcare, Near East University, Nicosia, Turkey. |
| authorships[9].affiliations[1].institution_ids | https://openalex.org/I29891158 |
| authorships[9].affiliations[1].raw_affiliation_string | Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates. |
| authorships[9].institutions[0].id | https://openalex.org/I29891158 |
| authorships[9].institutions[0].ror | https://ror.org/00engpz63 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I29891158 |
| authorships[9].institutions[0].country_code | AE |
| authorships[9].institutions[0].display_name | University of Sharjah |
| authorships[9].institutions[1].id | https://openalex.org/I69050122 |
| authorships[9].institutions[1].ror | https://ror.org/02x8svs93 |
| authorships[9].institutions[1].type | education |
| authorships[9].institutions[1].lineage | https://openalex.org/I69050122 |
| authorships[9].institutions[1].country_code | CY |
| authorships[9].institutions[1].display_name | Near East University |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Dilber Uzun Ozsahin |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates., Operational Research Center in Healthcare, Near East University, Nicosia, Turkey. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.7181/acfs.2024.00283 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detection of concha bullosa using deep learning models in cone-beam computed tomography images: a feasibility study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W4385404526, https://openalex.org/W4385585573, https://openalex.org/W2901635074, https://openalex.org/W4220839243, https://openalex.org/W3210226683, https://openalex.org/W3157503127, https://openalex.org/W4293073787, https://openalex.org/W2768843469, https://openalex.org/W2614950993, https://openalex.org/W4285163831 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | doi:10.7181/acfs.2024.00283 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2765001114 |
| best_oa_location.source.issn | 2287-1152, 2287-5603 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2287-1152 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Archives of Craniofacial Surgery |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Archives of Craniofacial Surgery |
| best_oa_location.landing_page_url | https://doi.org/10.7181/acfs.2024.00283 |
| primary_location.id | doi:10.7181/acfs.2024.00283 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2765001114 |
| primary_location.source.issn | 2287-1152, 2287-5603 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2287-1152 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Archives of Craniofacial Surgery |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Archives of Craniofacial Surgery |
| primary_location.landing_page_url | https://doi.org/10.7181/acfs.2024.00283 |
| publication_date | 2025-02-20 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3215229425, https://openalex.org/W3158188625, https://openalex.org/W1965888641, https://openalex.org/W2792108268, https://openalex.org/W2593612383, https://openalex.org/W2325241707, https://openalex.org/W4221130514, https://openalex.org/W1985896978, https://openalex.org/W3157503127, https://openalex.org/W2792385525, https://openalex.org/W3081865465, https://openalex.org/W2794640151, https://openalex.org/W1997090085, https://openalex.org/W1505472321, https://openalex.org/W2803760365, https://openalex.org/W3147329173, https://openalex.org/W2809254203, https://openalex.org/W2768567289, https://openalex.org/W3014905804, https://openalex.org/W2055017491, https://openalex.org/W4388422569, https://openalex.org/W2110158442, https://openalex.org/W36956543, https://openalex.org/W4297775537, https://openalex.org/W3204952604, https://openalex.org/W3190144190, https://openalex.org/W2953532875, https://openalex.org/W2966555834, https://openalex.org/W4387059201, https://openalex.org/W2020304659, https://openalex.org/W4214671063, https://openalex.org/W4283641828, https://openalex.org/W4297002432 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 61, 70, 106, 134 |
| abstract_inverted_index.41 | 95 |
| abstract_inverted_index.CB | 32, 51, 205 |
| abstract_inverted_index.CE | 107, 144 |
| abstract_inverted_index.F1 | 189 |
| abstract_inverted_index.In | 139, 170 |
| abstract_inverted_index.Of | 81 |
| abstract_inverted_index.an | 157, 162, 180 |
| abstract_inverted_index.as | 6 |
| abstract_inverted_index.at | 177 |
| abstract_inverted_index.by | 125, 148 |
| abstract_inverted_index.in | 30, 33, 203, 206 |
| abstract_inverted_index.is | 10 |
| abstract_inverted_index.of | 2, 26, 60, 159, 168, 182 |
| abstract_inverted_index.to | 22, 90, 96, 210 |
| abstract_inverted_index.(83 | 49 |
| abstract_inverted_index.119 | 53 |
| abstract_inverted_index.162 | 86 |
| abstract_inverted_index.203 | 46, 83 |
| abstract_inverted_index.AUC | 181 |
| abstract_inverted_index.CB) | 55 |
| abstract_inverted_index.The | 122, 184 |
| abstract_inverted_index.and | 16, 52, 94, 120, 131, 161, 179, 188, 220 |
| abstract_inverted_index.are | 225 |
| abstract_inverted_index.for | 195 |
| abstract_inverted_index.set | 93 |
| abstract_inverted_index.the | 24, 57, 82, 91, 97, 101, 140, 143, 153, 165, 174 |
| abstract_inverted_index.was | 146 |
| abstract_inverted_index.(CE) | 74 |
| abstract_inverted_index.(RF) | 137 |
| abstract_inverted_index.(all | 191 |
| abstract_inverted_index.92%) | 192 |
| abstract_inverted_index.92%. | 183 |
| abstract_inverted_index.98%. | 169 |
| abstract_inverted_index.CBCT | 47, 84, 207 |
| abstract_inverted_index.Deep | 197 |
| abstract_inverted_index.This | 19 |
| abstract_inverted_index.aims | 21 |
| abstract_inverted_index.also | 4 |
| abstract_inverted_index.area | 163 |
| abstract_inverted_index.deep | 27, 114, 222 |
| abstract_inverted_index.each | 126 |
| abstract_inverted_index.from | 45, 56 |
| abstract_inverted_index.high | 201 |
| abstract_inverted_index.into | 112, 133 |
| abstract_inverted_index.set. | 99 |
| abstract_inverted_index.then | 129 |
| abstract_inverted_index.were | 43, 87, 103, 128, 193 |
| abstract_inverted_index.with | 12, 50 |
| abstract_inverted_index.(AUC) | 167 |
| abstract_inverted_index.(CB), | 9 |
| abstract_inverted_index.91.7% | 160 |
| abstract_inverted_index.These | 65 |
| abstract_inverted_index.being | 110 |
| abstract_inverted_index.curve | 166 |
| abstract_inverted_index.input | 111, 132 |
| abstract_inverted_index.known | 5 |
| abstract_inverted_index.model | 127 |
| abstract_inverted_index.nasal | 13 |
| abstract_inverted_index.scans | 48, 66 |
| abstract_inverted_index.score | 190 |
| abstract_inverted_index.sizes | 219 |
| abstract_inverted_index.study | 20 |
| abstract_inverted_index.these | 212 |
| abstract_inverted_index.under | 164 |
| abstract_inverted_index.using | 76, 105 |
| abstract_inverted_index.(CBCT) | 38 |
| abstract_inverted_index.(DWT). | 80 |
| abstract_inverted_index.82.46% | 178 |
| abstract_inverted_index.before | 109 |
| abstract_inverted_index.concha | 7 |
| abstract_inverted_index.dental | 62 |
| abstract_inverted_index.forest | 136 |
| abstract_inverted_index.images | 42, 102 |
| abstract_inverted_index.larger | 217 |
| abstract_inverted_index.lowest | 175 |
| abstract_inverted_index.method | 75 |
| abstract_inverted_index.models | 29, 199, 224 |
| abstract_inverted_index.namely | 117 |
| abstract_inverted_index.phase, | 142 |
| abstract_inverted_index.random | 135 |
| abstract_inverted_index.sample | 218 |
| abstract_inverted_index.septal | 14 |
| abstract_inverted_index.bullosa | 8 |
| abstract_inverted_index.confirm | 211 |
| abstract_inverted_index.coronal | 34, 41 |
| abstract_inverted_index.further | 214 |
| abstract_inverted_index.highest | 154, 185 |
| abstract_inverted_index.images, | 85 |
| abstract_inverted_index.images. | 208 |
| abstract_inverted_index.models, | 116 |
| abstract_inverted_index.recall, | 187 |
| abstract_inverted_index.refined | 147 |
| abstract_inverted_index.studies | 215 |
| abstract_inverted_index.testing | 98 |
| abstract_inverted_index.through | 69 |
| abstract_inverted_index.various | 221 |
| abstract_inverted_index.wavelet | 78 |
| abstract_inverted_index.without | 54 |
| abstract_inverted_index.However, | 209 |
| abstract_inverted_index.accuracy | 158, 176, 202 |
| abstract_inverted_index.archives | 59 |
| abstract_inverted_index.assigned | 89 |
| abstract_inverted_index.computed | 36 |
| abstract_inverted_index.contrast | 72 |
| abstract_inverted_index.discrete | 77 |
| abstract_inverted_index.enhanced | 104 |
| abstract_inverted_index.evaluate | 23 |
| abstract_inverted_index.features | 123 |
| abstract_inverted_index.learning | 28, 115, 198, 223 |
| abstract_inverted_index.observed | 194 |
| abstract_inverted_index.obtained | 44 |
| abstract_inverted_index.randomly | 88 |
| abstract_inverted_index.recorded | 173 |
| abstract_inverted_index.results, | 213 |
| abstract_inverted_index.teaching | 63 |
| abstract_inverted_index.training | 92 |
| abstract_inverted_index.ResNet50, | 118 |
| abstract_inverted_index.achieving | 156 |
| abstract_inverted_index.cone-beam | 35 |
| abstract_inverted_index.contrast, | 171 |
| abstract_inverted_index.detecting | 31, 204 |
| abstract_inverted_index.deviation | 15 |
| abstract_inverted_index.extracted | 124 |
| abstract_inverted_index.flattened | 130 |
| abstract_inverted_index.hospital. | 64 |
| abstract_inverted_index.involving | 216 |
| abstract_inverted_index.radiology | 58 |
| abstract_inverted_index.required. | 226 |
| abstract_inverted_index.sinonasal | 17 |
| abstract_inverted_index.technique | 108, 145 |
| abstract_inverted_index.transform | 79 |
| abstract_inverted_index.underwent | 67 |
| abstract_inverted_index.Initially, | 100 |
| abstract_inverted_index.MobileNet. | 121 |
| abstract_inverted_index.ResNet101, | 119 |
| abstract_inverted_index.associated | 11 |
| abstract_inverted_index.hybridized | 71 |
| abstract_inverted_index.precision, | 186 |
| abstract_inverted_index.subsequent | 141 |
| abstract_inverted_index.tomography | 37 |
| abstract_inverted_index.Background: | 0 |
| abstract_inverted_index.classifier. | 138 |
| abstract_inverted_index.enhancement | 73 |
| abstract_inverted_index.performance | 25 |
| abstract_inverted_index.pre-trained | 113 |
| abstract_inverted_index.turbinates, | 3 |
| abstract_inverted_index.DWT.Results: | 150 |
| abstract_inverted_index.Standardized | 40 |
| abstract_inverted_index.demonstrated | 152, 200 |
| abstract_inverted_index.pathologies. | 18 |
| abstract_inverted_index.performance, | 155 |
| abstract_inverted_index.incorporating | 149 |
| abstract_inverted_index.preprocessing | 68 |
| abstract_inverted_index.Pneumatization | 1 |
| abstract_inverted_index.CE-MobileNet-RF | 172 |
| abstract_inverted_index.images.Methods: | 39 |
| abstract_inverted_index.CE-DWT-ResNet101-RF | 151 |
| abstract_inverted_index.CE-DWT-ResNet101-RF.Conclusion: | 196 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile.value | 0.98870463 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |