Detection of Data Scarce Malware Using One-Shot Learning With Relation Network Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/access.2023.3293117
Malware has evolved to pose a major threat to information security. Efficient anti-malware software is essential in safeguarding confidential information from these threats. However, identifying malware continues to be a challenging task. Signature-based detection methods are quick but fail to detect unknown malware. Additionally, the traditional machine learning archetype requires a large amount of data to be effective, which hinders the ability of an anti-malware system to quickly learn about new threats with limited training samples. In a real-world setting, the majority of malware is found in the form of Portable Executable (PE) files. While there are various formats of PE files, samples of all formats such as ocx, acm, com, scr, etc., are not readily available in large numbers. Therefore, building a conventional Machine Learning (ML) model with greater generalization for data-scarce PE formats becomes a hefty task. Consequently, in such a scenario, Few-Shot learning (FSL) is helpful in detecting the presence of malware, even with a very small number of training samples. FSL techniques help to make predictions based on an insufficient number of samples. In this paper, we propose a novel architecture based on the Relation Network for FSL implementation. We propose a Discriminative Feature Embedder for feature extraction. These extracted features are passed to our proposed Relation Module (RM) for similarity measure. RM produces the relation scores that lead to improved classification. We use PE file formats, i.e., ocx, acm, com, and scr, after transforming them into images. We employ five-shot learning and then one-shot learning, which produces 94% accuracy with only one training instance. We observe that the proposed architecture outpaces the baseline method and provides enhanced accuracy by up to 94% with only one sample.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2023.3293117
- https://ieeexplore.ieee.org/ielx7/6287639/6514899/10175371.pdf
- OA Status
- gold
- Cited By
- 9
- References
- 54
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4383503498
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4383503498Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2023.3293117Digital Object Identifier
- Title
-
Detection of Data Scarce Malware Using One-Shot Learning With Relation NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Faiza Babar Khan, Muhammad Hanif Durad, Asifullah Khan, Farrukh Aslam Khan, Sajjad Hussain Chauhdary, Mohammed A. AlqarniList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2023.3293117Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10175371.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10175371.pdfDirect OA link when available
- Concepts
-
Malware, Computer science, Relation (database), Executable, Machine learning, Artificial intelligence, Task (project management), Data mining, Computer security, Operating system, Economics, ManagementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 5Per-year citation counts (last 5 years)
- References (count)
-
54Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4383503498 |
|---|---|
| doi | https://doi.org/10.1109/access.2023.3293117 |
| ids.doi | https://doi.org/10.1109/access.2023.3293117 |
| ids.openalex | https://openalex.org/W4383503498 |
| fwci | 2.29898599 |
| type | article |
| title | Detection of Data Scarce Malware Using One-Shot Learning With Relation Network |
| biblio.issue | |
| biblio.volume | 11 |
| biblio.last_page | 74457 |
| biblio.first_page | 74438 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9975000023841858 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T11241 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.996399998664856 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Advanced Malware Detection Techniques |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C541664917 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8731197118759155 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q14001 |
| concepts[0].display_name | Malware |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8262369632720947 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C25343380 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6346251368522644 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q277521 |
| concepts[2].display_name | Relation (database) |
| concepts[3].id | https://openalex.org/C160145156 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5857869386672974 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q778586 |
| concepts[3].display_name | Executable |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5454734563827515 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5190027952194214 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C2780451532 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48503822088241577 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[6].display_name | Task (project management) |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.38113027811050415 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C38652104 |
| concepts[8].level | 1 |
| concepts[8].score | 0.29063117504119873 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[8].display_name | Computer security |
| concepts[9].id | https://openalex.org/C111919701 |
| concepts[9].level | 1 |
| concepts[9].score | 0.11408260464668274 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[9].display_name | Operating system |
| concepts[10].id | https://openalex.org/C162324750 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[10].display_name | Economics |
| concepts[11].id | https://openalex.org/C187736073 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[11].display_name | Management |
| keywords[0].id | https://openalex.org/keywords/malware |
| keywords[0].score | 0.8731197118759155 |
| keywords[0].display_name | Malware |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8262369632720947 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/relation |
| keywords[2].score | 0.6346251368522644 |
| keywords[2].display_name | Relation (database) |
| keywords[3].id | https://openalex.org/keywords/executable |
| keywords[3].score | 0.5857869386672974 |
| keywords[3].display_name | Executable |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5454734563827515 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5190027952194214 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/task |
| keywords[6].score | 0.48503822088241577 |
| keywords[6].display_name | Task (project management) |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.38113027811050415 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/computer-security |
| keywords[8].score | 0.29063117504119873 |
| keywords[8].display_name | Computer security |
| keywords[9].id | https://openalex.org/keywords/operating-system |
| keywords[9].score | 0.11408260464668274 |
| keywords[9].display_name | Operating system |
| language | en |
| locations[0].id | doi:10.1109/access.2023.3293117 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10175371.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2023.3293117 |
| locations[1].id | pmh:oai:doaj.org/article:e19f3578fb004f8ca6e4c9ae3b075f8f |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 11, Pp 74438-74457 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/e19f3578fb004f8ca6e4c9ae3b075f8f |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5004231827 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6751-8360 |
| authorships[0].author.display_name | Faiza Babar Khan |
| authorships[0].countries | PK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I134276161 |
| authorships[0].affiliations[0].raw_affiliation_string | CIPMA Laboratory, DCIS, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan |
| authorships[0].institutions[0].id | https://openalex.org/I134276161 |
| authorships[0].institutions[0].ror | https://ror.org/04d4mbk19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I134276161 |
| authorships[0].institutions[0].country_code | PK |
| authorships[0].institutions[0].display_name | Pakistan Institute of Engineering and Applied Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Faiza Babar Khan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | CIPMA Laboratory, DCIS, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan |
| authorships[1].author.id | https://openalex.org/A5021414760 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8026-1045 |
| authorships[1].author.display_name | Muhammad Hanif Durad |
| authorships[1].countries | PK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I134276161 |
| authorships[1].affiliations[0].raw_affiliation_string | CIPMA Laboratory, DCIS, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan |
| authorships[1].institutions[0].id | https://openalex.org/I134276161 |
| authorships[1].institutions[0].ror | https://ror.org/04d4mbk19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I134276161 |
| authorships[1].institutions[0].country_code | PK |
| authorships[1].institutions[0].display_name | Pakistan Institute of Engineering and Applied Sciences |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Muhammad Hanif Durad |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | CIPMA Laboratory, DCIS, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan |
| authorships[2].author.id | https://openalex.org/A5083112369 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2039-5305 |
| authorships[2].author.display_name | Asifullah Khan |
| authorships[2].countries | PK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I134276161 |
| authorships[2].affiliations[0].raw_affiliation_string | Pattern Recognition Laboratory, DCIS, PIEAS, Nilore, Islamabad, Pakistan |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I134276161 |
| authorships[2].affiliations[1].raw_affiliation_string | PIEAS Artificial Intelligence Center (PAIC), PIEAS, Nilore, Islamabad, Pakistan |
| authorships[2].institutions[0].id | https://openalex.org/I134276161 |
| authorships[2].institutions[0].ror | https://ror.org/04d4mbk19 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I134276161 |
| authorships[2].institutions[0].country_code | PK |
| authorships[2].institutions[0].display_name | Pakistan Institute of Engineering and Applied Sciences |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Asifullah Khan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | PIEAS Artificial Intelligence Center (PAIC), PIEAS, Nilore, Islamabad, Pakistan, Pattern Recognition Laboratory, DCIS, PIEAS, Nilore, Islamabad, Pakistan |
| authorships[3].author.id | https://openalex.org/A5018881921 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7023-7172 |
| authorships[3].author.display_name | Farrukh Aslam Khan |
| authorships[3].countries | SA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I28022161 |
| authorships[3].affiliations[0].raw_affiliation_string | Center of Excellence in Information Assurance (CoEIA), King Saud University, Riyadh, Saudi Arabia |
| authorships[3].institutions[0].id | https://openalex.org/I28022161 |
| authorships[3].institutions[0].ror | https://ror.org/02f81g417 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I28022161 |
| authorships[3].institutions[0].country_code | SA |
| authorships[3].institutions[0].display_name | King Saud University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Farrukh Aslam Khan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Center of Excellence in Information Assurance (CoEIA), King Saud University, Riyadh, Saudi Arabia |
| authorships[4].author.id | https://openalex.org/A5022174447 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8552-5786 |
| authorships[4].author.display_name | Sajjad Hussain Chauhdary |
| authorships[4].countries | SA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210099699 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science and Artificial Intelligence, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia |
| authorships[4].institutions[0].id | https://openalex.org/I4210099699 |
| authorships[4].institutions[0].ror | https://ror.org/015ya8798 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210099699 |
| authorships[4].institutions[0].country_code | SA |
| authorships[4].institutions[0].display_name | University of Jeddah |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sajjad Hussain Chauhdary |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science and Artificial Intelligence, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia |
| authorships[5].author.id | https://openalex.org/A5046419777 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3284-537X |
| authorships[5].author.display_name | Mohammed A. Alqarni |
| authorships[5].countries | SA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210099699 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Software Engineering, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia |
| authorships[5].institutions[0].id | https://openalex.org/I4210099699 |
| authorships[5].institutions[0].ror | https://ror.org/015ya8798 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210099699 |
| authorships[5].institutions[0].country_code | SA |
| authorships[5].institutions[0].display_name | University of Jeddah |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Mohammed Alqarni |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Software Engineering, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10175371.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detection of Data Scarce Malware Using One-Shot Learning With Relation Network |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W2350278424, https://openalex.org/W2071432835, https://openalex.org/W2097492617, https://openalex.org/W4234371507, https://openalex.org/W4299534542, https://openalex.org/W1628824497, https://openalex.org/W1995118279, https://openalex.org/W4240624848, https://openalex.org/W2045408812, https://openalex.org/W2888033806 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2023.3293117 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10175371.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2023.3293117 |
| primary_location.id | doi:10.1109/access.2023.3293117 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10175371.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2023.3293117 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2565684601, https://openalex.org/W6681968150, https://openalex.org/W2963078159, https://openalex.org/W3000318628, https://openalex.org/W3043310823, https://openalex.org/W2995360785, https://openalex.org/W3207011213, https://openalex.org/W6736057607, https://openalex.org/W6799042206, https://openalex.org/W6845988380, https://openalex.org/W2115733720, https://openalex.org/W6733556328, https://openalex.org/W6760935663, https://openalex.org/W6751813273, https://openalex.org/W2998074434, https://openalex.org/W4297477879, https://openalex.org/W2976102057, https://openalex.org/W2969181591, https://openalex.org/W3095028907, https://openalex.org/W2894906112, https://openalex.org/W2960616960, https://openalex.org/W2996610370, https://openalex.org/W6717697761, https://openalex.org/W2171590421, https://openalex.org/W2964105864, https://openalex.org/W3046698617, https://openalex.org/W3093471646, https://openalex.org/W2982806777, https://openalex.org/W3092053846, https://openalex.org/W2996333549, https://openalex.org/W6755095635, https://openalex.org/W3012405452, https://openalex.org/W6762133282, https://openalex.org/W4315473665, https://openalex.org/W4316036382, https://openalex.org/W2972568755, https://openalex.org/W2896537475, https://openalex.org/W2990166555, https://openalex.org/W2998800431, https://openalex.org/W3034942609, https://openalex.org/W4322730961, https://openalex.org/W6766578407, https://openalex.org/W3184703970, https://openalex.org/W2753160622, https://openalex.org/W3154934604, https://openalex.org/W4304479547, https://openalex.org/W4294526978, https://openalex.org/W3021778166, https://openalex.org/W2963281697, https://openalex.org/W2604763608, https://openalex.org/W2963341924, https://openalex.org/W2937153231, https://openalex.org/W2944580495, https://openalex.org/W3099486271 |
| referenced_works_count | 54 |
| abstract_inverted_index.a | 5, 29, 50, 77, 122, 136, 142, 157, 182, 195 |
| abstract_inverted_index.In | 76, 177 |
| abstract_inverted_index.PE | 100, 133, 228 |
| abstract_inverted_index.RM | 216 |
| abstract_inverted_index.We | 193, 226, 242, 259 |
| abstract_inverted_index.an | 63, 172 |
| abstract_inverted_index.as | 107 |
| abstract_inverted_index.be | 28, 56 |
| abstract_inverted_index.by | 273 |
| abstract_inverted_index.in | 16, 86, 117, 140, 149 |
| abstract_inverted_index.is | 14, 84, 147 |
| abstract_inverted_index.of | 53, 62, 82, 89, 99, 103, 153, 161, 175 |
| abstract_inverted_index.on | 171, 186 |
| abstract_inverted_index.to | 3, 8, 27, 39, 55, 66, 167, 207, 223, 275 |
| abstract_inverted_index.up | 274 |
| abstract_inverted_index.we | 180 |
| abstract_inverted_index.FSL | 164, 191 |
| abstract_inverted_index.all | 104 |
| abstract_inverted_index.and | 235, 246, 269 |
| abstract_inverted_index.are | 35, 96, 113, 205 |
| abstract_inverted_index.but | 37 |
| abstract_inverted_index.for | 131, 190, 199, 213 |
| abstract_inverted_index.has | 1 |
| abstract_inverted_index.new | 70 |
| abstract_inverted_index.not | 114 |
| abstract_inverted_index.one | 256, 279 |
| abstract_inverted_index.our | 208 |
| abstract_inverted_index.the | 44, 60, 80, 87, 151, 187, 218, 262, 266 |
| abstract_inverted_index.use | 227 |
| abstract_inverted_index.(ML) | 126 |
| abstract_inverted_index.(PE) | 92 |
| abstract_inverted_index.(RM) | 212 |
| abstract_inverted_index.acm, | 109, 233 |
| abstract_inverted_index.com, | 110, 234 |
| abstract_inverted_index.data | 54 |
| abstract_inverted_index.even | 155 |
| abstract_inverted_index.fail | 38 |
| abstract_inverted_index.file | 229 |
| abstract_inverted_index.form | 88 |
| abstract_inverted_index.from | 20 |
| abstract_inverted_index.help | 166 |
| abstract_inverted_index.into | 240 |
| abstract_inverted_index.lead | 222 |
| abstract_inverted_index.make | 168 |
| abstract_inverted_index.ocx, | 108, 232 |
| abstract_inverted_index.only | 255, 278 |
| abstract_inverted_index.pose | 4 |
| abstract_inverted_index.scr, | 111, 236 |
| abstract_inverted_index.such | 106, 141 |
| abstract_inverted_index.that | 221, 261 |
| abstract_inverted_index.them | 239 |
| abstract_inverted_index.then | 247 |
| abstract_inverted_index.this | 178 |
| abstract_inverted_index.very | 158 |
| abstract_inverted_index.with | 72, 128, 156, 254, 277 |
| abstract_inverted_index.(FSL) | 146 |
| abstract_inverted_index.These | 202 |
| abstract_inverted_index.While | 94 |
| abstract_inverted_index.about | 69 |
| abstract_inverted_index.after | 237 |
| abstract_inverted_index.based | 170, 185 |
| abstract_inverted_index.etc., | 112 |
| abstract_inverted_index.found | 85 |
| abstract_inverted_index.hefty | 137 |
| abstract_inverted_index.i.e., | 231 |
| abstract_inverted_index.large | 51, 118 |
| abstract_inverted_index.learn | 68 |
| abstract_inverted_index.major | 6 |
| abstract_inverted_index.model | 127 |
| abstract_inverted_index.novel | 183 |
| abstract_inverted_index.quick | 36 |
| abstract_inverted_index.small | 159 |
| abstract_inverted_index.task. | 31, 138 |
| abstract_inverted_index.there | 95 |
| abstract_inverted_index.these | 21 |
| abstract_inverted_index.which | 58, 250 |
| abstract_inverted_index.Module | 211 |
| abstract_inverted_index.amount | 52 |
| abstract_inverted_index.detect | 40 |
| abstract_inverted_index.employ | 243 |
| abstract_inverted_index.files, | 101 |
| abstract_inverted_index.files. | 93 |
| abstract_inverted_index.method | 268 |
| abstract_inverted_index.number | 160, 174 |
| abstract_inverted_index.paper, | 179 |
| abstract_inverted_index.passed | 206 |
| abstract_inverted_index.scores | 220 |
| abstract_inverted_index.system | 65 |
| abstract_inverted_index.threat | 7 |
| abstract_inverted_index.Feature | 197 |
| abstract_inverted_index.Machine | 124 |
| abstract_inverted_index.Malware | 0 |
| abstract_inverted_index.Network | 189 |
| abstract_inverted_index.ability | 61 |
| abstract_inverted_index.becomes | 135 |
| abstract_inverted_index.evolved | 2 |
| abstract_inverted_index.feature | 200 |
| abstract_inverted_index.formats | 98, 105, 134 |
| abstract_inverted_index.greater | 129 |
| abstract_inverted_index.helpful | 148 |
| abstract_inverted_index.hinders | 59 |
| abstract_inverted_index.images. | 241 |
| abstract_inverted_index.limited | 73 |
| abstract_inverted_index.machine | 46 |
| abstract_inverted_index.malware | 25, 83 |
| abstract_inverted_index.methods | 34 |
| abstract_inverted_index.observe | 260 |
| abstract_inverted_index.propose | 181, 194 |
| abstract_inverted_index.quickly | 67 |
| abstract_inverted_index.readily | 115 |
| abstract_inverted_index.sample. | 280 |
| abstract_inverted_index.samples | 102 |
| abstract_inverted_index.threats | 71 |
| abstract_inverted_index.unknown | 41 |
| abstract_inverted_index.various | 97 |
| abstract_inverted_index.Embedder | 198 |
| abstract_inverted_index.Few-Shot | 144 |
| abstract_inverted_index.However, | 23 |
| abstract_inverted_index.Learning | 125 |
| abstract_inverted_index.Portable | 90 |
| abstract_inverted_index.Relation | 188, 210 |
| abstract_inverted_index.accuracy | 253, 272 |
| abstract_inverted_index.baseline | 267 |
| abstract_inverted_index.building | 121 |
| abstract_inverted_index.enhanced | 271 |
| abstract_inverted_index.features | 204 |
| abstract_inverted_index.formats, | 230 |
| abstract_inverted_index.improved | 224 |
| abstract_inverted_index.learning | 47, 145, 245 |
| abstract_inverted_index.majority | 81 |
| abstract_inverted_index.malware, | 154 |
| abstract_inverted_index.malware. | 42 |
| abstract_inverted_index.measure. | 215 |
| abstract_inverted_index.numbers. | 119 |
| abstract_inverted_index.one-shot | 248 |
| abstract_inverted_index.outpaces | 265 |
| abstract_inverted_index.presence | 152 |
| abstract_inverted_index.produces | 217, 251 |
| abstract_inverted_index.proposed | 209, 263 |
| abstract_inverted_index.provides | 270 |
| abstract_inverted_index.relation | 219 |
| abstract_inverted_index.requires | 49 |
| abstract_inverted_index.samples. | 75, 163, 176 |
| abstract_inverted_index.setting, | 79 |
| abstract_inverted_index.software | 13 |
| abstract_inverted_index.threats. | 22 |
| abstract_inverted_index.training | 74, 162, 257 |
| abstract_inverted_index.Efficient | 11 |
| abstract_inverted_index.archetype | 48 |
| abstract_inverted_index.available | 116 |
| abstract_inverted_index.continues | 26 |
| abstract_inverted_index.detecting | 150 |
| abstract_inverted_index.detection | 33 |
| abstract_inverted_index.essential | 15 |
| abstract_inverted_index.extracted | 203 |
| abstract_inverted_index.five-shot | 244 |
| abstract_inverted_index.instance. | 258 |
| abstract_inverted_index.learning, | 249 |
| abstract_inverted_index.scenario, | 143 |
| abstract_inverted_index.security. | 10 |
| abstract_inverted_index.94% | 252, 276 |
| abstract_inverted_index.Executable | 91 |
| abstract_inverted_index.Therefore, | 120 |
| abstract_inverted_index.effective, | 57 |
| abstract_inverted_index.real-world | 78 |
| abstract_inverted_index.similarity | 214 |
| abstract_inverted_index.techniques | 165 |
| abstract_inverted_index.challenging | 30 |
| abstract_inverted_index.data-scarce | 132 |
| abstract_inverted_index.extraction. | 201 |
| abstract_inverted_index.identifying | 24 |
| abstract_inverted_index.information | 9, 19 |
| abstract_inverted_index.predictions | 169 |
| abstract_inverted_index.traditional | 45 |
| abstract_inverted_index.anti-malware | 12, 64 |
| abstract_inverted_index.architecture | 184, 264 |
| abstract_inverted_index.confidential | 18 |
| abstract_inverted_index.conventional | 123 |
| abstract_inverted_index.insufficient | 173 |
| abstract_inverted_index.safeguarding | 17 |
| abstract_inverted_index.transforming | 238 |
| abstract_inverted_index.Additionally, | 43 |
| abstract_inverted_index.Consequently, | 139 |
| abstract_inverted_index.Discriminative | 196 |
| abstract_inverted_index.generalization | 130 |
| abstract_inverted_index.Signature-based | 32 |
| abstract_inverted_index.classification. | 225 |
| abstract_inverted_index.implementation. | 192 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.5799999833106995 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.88113288 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |