Detection of Malicious Agents in Social Learning Article Swipe
Valentina Shumovskaia
,
Mert Kayaalp
,
Ali H. Sayed
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2403.12619
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2403.12619
Non-Bayesian social learning is a framework for distributed hypothesis testing aimed at learning the true state of the environment. Traditionally, the agents are assumed to receive observations conditioned on the same true state, although it is also possible to examine the case of heterogeneous models across the graph. One important special case is when heterogeneity is caused by the presence of malicious agents whose goal is to move the agents toward a wrong hypothesis. In this work, we propose an algorithm that allows discovering the true state of every individual agent based on the sequence of their beliefs. In so doing, the methodology is also able to locate malicious behavior.
Related Topics
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2403.12619
- https://arxiv.org/pdf/2403.12619
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393027425
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393027425Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2403.12619Digital Object Identifier
- Title
-
Detection of Malicious Agents in Social LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-19Full publication date if available
- Authors
-
Valentina Shumovskaia, Mert Kayaalp, Ali H. SayedList of authors in order
- Landing page
-
https://arxiv.org/abs/2403.12619Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2403.12619Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2403.12619Direct OA link when available
- Concepts
-
Computer science, Computer security, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393027425 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2403.12619 |
| ids.doi | https://doi.org/10.48550/arxiv.2403.12619 |
| ids.openalex | https://openalex.org/W4393027425 |
| fwci | |
| type | preprint |
| title | Detection of Malicious Agents in Social Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8273000121116638 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5085412263870239 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C38652104 |
| concepts[1].level | 1 |
| concepts[1].score | 0.3773656487464905 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[1].display_name | Computer security |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.35781973600387573 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5085412263870239 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/computer-security |
| keywords[1].score | 0.3773656487464905 |
| keywords[1].display_name | Computer security |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.35781973600387573 |
| keywords[2].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2403.12619 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2403.12619 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2403.12619 |
| locations[1].id | doi:10.48550/arxiv.2403.12619 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2403.12619 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5083459348 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5847-0783 |
| authorships[0].author.display_name | Valentina Shumovskaia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shumovskaia, Valentina |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5024484921 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0082-1058 |
| authorships[1].author.display_name | Mert Kayaalp |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kayaalp, Mert |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5091103447 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5125-5519 |
| authorships[2].author.display_name | Ali H. Sayed |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Sayed, Ali H. |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2403.12619 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Detection of Malicious Agents in Social Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8273000121116638 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4391913857, https://openalex.org/W2350741829, https://openalex.org/W2530322880 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2403.12619 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2403.12619 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2403.12619 |
| primary_location.id | pmh:oai:arXiv.org:2403.12619 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2403.12619 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2403.12619 |
| publication_date | 2024-03-19 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 71 |
| abstract_inverted_index.In | 74, 98 |
| abstract_inverted_index.an | 79 |
| abstract_inverted_index.at | 11 |
| abstract_inverted_index.by | 57 |
| abstract_inverted_index.is | 3, 35, 52, 55, 65, 103 |
| abstract_inverted_index.it | 34 |
| abstract_inverted_index.of | 16, 42, 60, 87, 95 |
| abstract_inverted_index.on | 28, 92 |
| abstract_inverted_index.so | 99 |
| abstract_inverted_index.to | 24, 38, 66, 106 |
| abstract_inverted_index.we | 77 |
| abstract_inverted_index.One | 48 |
| abstract_inverted_index.are | 22 |
| abstract_inverted_index.for | 6 |
| abstract_inverted_index.the | 13, 17, 20, 29, 40, 46, 58, 68, 84, 93, 101 |
| abstract_inverted_index.able | 105 |
| abstract_inverted_index.also | 36, 104 |
| abstract_inverted_index.case | 41, 51 |
| abstract_inverted_index.goal | 64 |
| abstract_inverted_index.move | 67 |
| abstract_inverted_index.same | 30 |
| abstract_inverted_index.that | 81 |
| abstract_inverted_index.this | 75 |
| abstract_inverted_index.true | 14, 31, 85 |
| abstract_inverted_index.when | 53 |
| abstract_inverted_index.agent | 90 |
| abstract_inverted_index.aimed | 10 |
| abstract_inverted_index.based | 91 |
| abstract_inverted_index.every | 88 |
| abstract_inverted_index.state | 15, 86 |
| abstract_inverted_index.their | 96 |
| abstract_inverted_index.whose | 63 |
| abstract_inverted_index.work, | 76 |
| abstract_inverted_index.wrong | 72 |
| abstract_inverted_index.across | 45 |
| abstract_inverted_index.agents | 21, 62, 69 |
| abstract_inverted_index.allows | 82 |
| abstract_inverted_index.caused | 56 |
| abstract_inverted_index.doing, | 100 |
| abstract_inverted_index.graph. | 47 |
| abstract_inverted_index.locate | 107 |
| abstract_inverted_index.models | 44 |
| abstract_inverted_index.social | 1 |
| abstract_inverted_index.state, | 32 |
| abstract_inverted_index.toward | 70 |
| abstract_inverted_index.assumed | 23 |
| abstract_inverted_index.examine | 39 |
| abstract_inverted_index.propose | 78 |
| abstract_inverted_index.receive | 25 |
| abstract_inverted_index.special | 50 |
| abstract_inverted_index.testing | 9 |
| abstract_inverted_index.although | 33 |
| abstract_inverted_index.beliefs. | 97 |
| abstract_inverted_index.learning | 2, 12 |
| abstract_inverted_index.possible | 37 |
| abstract_inverted_index.presence | 59 |
| abstract_inverted_index.sequence | 94 |
| abstract_inverted_index.algorithm | 80 |
| abstract_inverted_index.behavior. | 109 |
| abstract_inverted_index.framework | 5 |
| abstract_inverted_index.important | 49 |
| abstract_inverted_index.malicious | 61, 108 |
| abstract_inverted_index.hypothesis | 8 |
| abstract_inverted_index.individual | 89 |
| abstract_inverted_index.conditioned | 27 |
| abstract_inverted_index.discovering | 83 |
| abstract_inverted_index.distributed | 7 |
| abstract_inverted_index.hypothesis. | 73 |
| abstract_inverted_index.methodology | 102 |
| abstract_inverted_index.Non-Bayesian | 0 |
| abstract_inverted_index.environment. | 18 |
| abstract_inverted_index.observations | 26 |
| abstract_inverted_index.heterogeneity | 54 |
| abstract_inverted_index.heterogeneous | 43 |
| abstract_inverted_index.Traditionally, | 19 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |