Detection of Microcalcification Using the Wavelet Based Adaptive Sigmoid Function and Neural Network Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.3745/jips.01.0007
Mammogram images are sensitive in nature and even a minor change in the environment affects the quality of the images. Due to the lack of expert radiologists, it is difficult to interpret the mammogram images. In this paper an algorithm is proposed for a computer-aided diagnosis system, which is based on the wavelet based adaptive sigmoid function. The cascade feed-forward back propagation technique has been used for training and testing purposes. Due to the poor contrast in digital mammogram images it is difficult to process the images directly. Thus, the images were first processed using the wavelet based adaptive sigmoid function and then the suspicious regions were selected to extract the features. A combination of texture features and graylevel co-occurrence matrix features were extracted and used for training and testing purposes. The system was trained with 150 images, while a total 100 mammogram images were used for testing. A classification accuracy of more than 95% was obtained with our proposed method.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3745/jips.01.0007
- http://jips-k.org:80/file/down?pn=80051
- OA Status
- bronze
- Cited By
- 7
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2759570969
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2759570969Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3745/jips.01.0007Digital Object Identifier
- Title
-
Detection of Microcalcification Using the Wavelet Based Adaptive Sigmoid Function and Neural NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-01-01Full publication date if available
- Authors
-
Sanjeev Kumar, Mahesh ChandraList of authors in order
- Landing page
-
https://doi.org/10.3745/jips.01.0007Publisher landing page
- PDF URL
-
https://jips-k.org:80/file/down?pn=80051Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://jips-k.org:80/file/down?pn=80051Direct OA link when available
- Concepts
-
Computer science, Sigmoid function, Microcalcification, Wavelet, Artificial neural network, Artificial intelligence, Function (biology), Activation function, Pattern recognition (psychology), Mammography, Breast cancer, Evolutionary biology, Biology, Medicine, Internal medicine, CancerTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 1, 2020: 2, 2019: 2, 2018: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2759570969 |
|---|---|
| doi | https://doi.org/10.3745/jips.01.0007 |
| ids.doi | https://doi.org/10.3745/jips.01.0007 |
| ids.mag | 2759570969 |
| ids.openalex | https://openalex.org/W2759570969 |
| fwci | 0.31430091 |
| type | article |
| title | Detection of Microcalcification Using the Wavelet Based Adaptive Sigmoid Function and Neural Network |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9979000091552734 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9847999811172485 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T10824 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9688000082969666 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image Retrieval and Classification Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8747274875640869 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C81388566 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8734166622161865 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q526668 |
| concepts[1].display_name | Sigmoid function |
| concepts[2].id | https://openalex.org/C2781129008 |
| concepts[2].level | 5 |
| concepts[2].score | 0.6939142942428589 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1933877 |
| concepts[2].display_name | Microcalcification |
| concepts[3].id | https://openalex.org/C47432892 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6105743646621704 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[3].display_name | Wavelet |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5153955221176147 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.49530282616615295 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C14036430 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4367803931236267 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[6].display_name | Function (biology) |
| concepts[7].id | https://openalex.org/C38365724 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4188559353351593 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q4677469 |
| concepts[7].display_name | Activation function |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3695550262928009 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C2780472235 |
| concepts[9].level | 4 |
| concepts[9].score | 0.11050024628639221 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q324634 |
| concepts[9].display_name | Mammography |
| concepts[10].id | https://openalex.org/C530470458 |
| concepts[10].level | 3 |
| concepts[10].score | 0.04600954055786133 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q128581 |
| concepts[10].display_name | Breast cancer |
| concepts[11].id | https://openalex.org/C78458016 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[11].display_name | Evolutionary biology |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| concepts[14].id | https://openalex.org/C126322002 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[14].display_name | Internal medicine |
| concepts[15].id | https://openalex.org/C121608353 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[15].display_name | Cancer |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8747274875640869 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/sigmoid-function |
| keywords[1].score | 0.8734166622161865 |
| keywords[1].display_name | Sigmoid function |
| keywords[2].id | https://openalex.org/keywords/microcalcification |
| keywords[2].score | 0.6939142942428589 |
| keywords[2].display_name | Microcalcification |
| keywords[3].id | https://openalex.org/keywords/wavelet |
| keywords[3].score | 0.6105743646621704 |
| keywords[3].display_name | Wavelet |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.5153955221176147 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.49530282616615295 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/function |
| keywords[6].score | 0.4367803931236267 |
| keywords[6].display_name | Function (biology) |
| keywords[7].id | https://openalex.org/keywords/activation-function |
| keywords[7].score | 0.4188559353351593 |
| keywords[7].display_name | Activation function |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.3695550262928009 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/mammography |
| keywords[9].score | 0.11050024628639221 |
| keywords[9].display_name | Mammography |
| keywords[10].id | https://openalex.org/keywords/breast-cancer |
| keywords[10].score | 0.04600954055786133 |
| keywords[10].display_name | Breast cancer |
| language | en |
| locations[0].id | doi:10.3745/jips.01.0007 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S182544699 |
| locations[0].source.issn | 1976-913X, 2092-805X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1976-913X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Information Processing Systems |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | http://jips-k.org:80/file/down?pn=80051 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Information Processing Systems |
| locations[0].landing_page_url | https://doi.org/10.3745/jips.01.0007 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5103963362 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Sanjeev Kumar |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sanjeev Kumar |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5066284552 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9892-5527 |
| authorships[1].author.display_name | Mahesh Chandra |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Mahesh Chandra |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://jips-k.org:80/file/down?pn=80051 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2017-10-06T00:00:00 |
| display_name | Detection of Microcalcification Using the Wavelet Based Adaptive Sigmoid Function and Neural Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9979000091552734 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W3024979424, https://openalex.org/W4283785902, https://openalex.org/W2895192346, https://openalex.org/W3032499992, https://openalex.org/W2041004593, https://openalex.org/W3134817226, https://openalex.org/W3110577345, https://openalex.org/W3136579697, https://openalex.org/W2811324119, https://openalex.org/W3170224572 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2019 |
| counts_by_year[3].cited_by_count | 2 |
| counts_by_year[4].year | 2018 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3745/jips.01.0007 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S182544699 |
| best_oa_location.source.issn | 1976-913X, 2092-805X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1976-913X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Information Processing Systems |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://jips-k.org:80/file/down?pn=80051 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Information Processing Systems |
| best_oa_location.landing_page_url | https://doi.org/10.3745/jips.01.0007 |
| primary_location.id | doi:10.3745/jips.01.0007 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S182544699 |
| primary_location.source.issn | 1976-913X, 2092-805X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1976-913X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Information Processing Systems |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | http://jips-k.org:80/file/down?pn=80051 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Information Processing Systems |
| primary_location.landing_page_url | https://doi.org/10.3745/jips.01.0007 |
| publication_date | 2015-01-01 |
| publication_year | 2015 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 112, 148 |
| abstract_inverted_index.a | 8, 43, 139 |
| abstract_inverted_index.In | 35 |
| abstract_inverted_index.an | 38 |
| abstract_inverted_index.in | 4, 11, 76 |
| abstract_inverted_index.is | 28, 40, 48, 81 |
| abstract_inverted_index.it | 27, 80 |
| abstract_inverted_index.of | 17, 24, 114, 151 |
| abstract_inverted_index.on | 50 |
| abstract_inverted_index.to | 21, 30, 72, 83, 108 |
| abstract_inverted_index.100 | 141 |
| abstract_inverted_index.150 | 136 |
| abstract_inverted_index.95% | 154 |
| abstract_inverted_index.Due | 20, 71 |
| abstract_inverted_index.The | 57, 131 |
| abstract_inverted_index.and | 6, 68, 101, 117, 124, 128 |
| abstract_inverted_index.are | 2 |
| abstract_inverted_index.for | 42, 66, 126, 146 |
| abstract_inverted_index.has | 63 |
| abstract_inverted_index.our | 158 |
| abstract_inverted_index.the | 12, 15, 18, 22, 32, 51, 73, 85, 89, 95, 103, 110 |
| abstract_inverted_index.was | 133, 155 |
| abstract_inverted_index.back | 60 |
| abstract_inverted_index.been | 64 |
| abstract_inverted_index.even | 7 |
| abstract_inverted_index.lack | 23 |
| abstract_inverted_index.more | 152 |
| abstract_inverted_index.poor | 74 |
| abstract_inverted_index.than | 153 |
| abstract_inverted_index.then | 102 |
| abstract_inverted_index.this | 36 |
| abstract_inverted_index.used | 65, 125, 145 |
| abstract_inverted_index.were | 91, 106, 122, 144 |
| abstract_inverted_index.with | 135, 157 |
| abstract_inverted_index.Thus, | 88 |
| abstract_inverted_index.based | 49, 53, 97 |
| abstract_inverted_index.first | 92 |
| abstract_inverted_index.minor | 9 |
| abstract_inverted_index.paper | 37 |
| abstract_inverted_index.total | 140 |
| abstract_inverted_index.using | 94 |
| abstract_inverted_index.which | 47 |
| abstract_inverted_index.while | 138 |
| abstract_inverted_index.change | 10 |
| abstract_inverted_index.expert | 25 |
| abstract_inverted_index.images | 1, 79, 86, 90, 143 |
| abstract_inverted_index.matrix | 120 |
| abstract_inverted_index.nature | 5 |
| abstract_inverted_index.system | 132 |
| abstract_inverted_index.affects | 14 |
| abstract_inverted_index.cascade | 58 |
| abstract_inverted_index.digital | 77 |
| abstract_inverted_index.extract | 109 |
| abstract_inverted_index.images, | 137 |
| abstract_inverted_index.images. | 19, 34 |
| abstract_inverted_index.method. | 160 |
| abstract_inverted_index.process | 84 |
| abstract_inverted_index.quality | 16 |
| abstract_inverted_index.regions | 105 |
| abstract_inverted_index.sigmoid | 55, 99 |
| abstract_inverted_index.system, | 46 |
| abstract_inverted_index.testing | 69, 129 |
| abstract_inverted_index.texture | 115 |
| abstract_inverted_index.trained | 134 |
| abstract_inverted_index.wavelet | 52, 96 |
| abstract_inverted_index.accuracy | 150 |
| abstract_inverted_index.adaptive | 54, 98 |
| abstract_inverted_index.contrast | 75 |
| abstract_inverted_index.features | 116, 121 |
| abstract_inverted_index.function | 100 |
| abstract_inverted_index.obtained | 156 |
| abstract_inverted_index.proposed | 41, 159 |
| abstract_inverted_index.selected | 107 |
| abstract_inverted_index.testing. | 147 |
| abstract_inverted_index.training | 67, 127 |
| abstract_inverted_index.Mammogram | 0 |
| abstract_inverted_index.algorithm | 39 |
| abstract_inverted_index.diagnosis | 45 |
| abstract_inverted_index.difficult | 29, 82 |
| abstract_inverted_index.directly. | 87 |
| abstract_inverted_index.extracted | 123 |
| abstract_inverted_index.features. | 111 |
| abstract_inverted_index.function. | 56 |
| abstract_inverted_index.graylevel | 118 |
| abstract_inverted_index.interpret | 31 |
| abstract_inverted_index.mammogram | 33, 78, 142 |
| abstract_inverted_index.processed | 93 |
| abstract_inverted_index.purposes. | 70, 130 |
| abstract_inverted_index.sensitive | 3 |
| abstract_inverted_index.technique | 62 |
| abstract_inverted_index.suspicious | 104 |
| abstract_inverted_index.combination | 113 |
| abstract_inverted_index.environment | 13 |
| abstract_inverted_index.propagation | 61 |
| abstract_inverted_index.feed-forward | 59 |
| abstract_inverted_index.co-occurrence | 119 |
| abstract_inverted_index.radiologists, | 26 |
| abstract_inverted_index.classification | 149 |
| abstract_inverted_index.computer-aided | 44 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.82886682 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |