Determination of the Relative Frequencies of Expected Diagnoses in Duodenal Biopsies: An Essential Step in Developing an Artificial Intelligence Approach to Diagnostic Classification Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.20944/preprints202503.2274.v1
Understanding the diagnostic landscape prior to developing novel diagnostic strategies is key to managing expectations and authenticating results. In considering the possibility of developing alternate diagnostic approaches for coeliac disease based on duodenal biopsies, we audited 18 months’ worth of duodenal biopsies received in our centre to determine the exact proportions of different diagnoses. A total of 6245 duodenal biopsies were audited, of which 73.76% were normal and 8.84% fell within the spectrum of coeliac disease. Additionally, 6.47% were classified as showing non-specific inflammation, 1.86% were adenomas, 0.42% were carcinomas, and 0.06% were neuroendocrine tumours. Rarer diagnoses included ulceration, Helicobacter pylori infection, Giardiasis, lymphangiectasia, transplant rejection, and lymphoma. Furthermore, 227 biopsies (3.63%) showed isolated intraepithelial lymphocytosis, of which 24 cases eventually received a definitive diagnosis of coeliac disease. We present the first long-term audit of all endoscopic duodenal biopsies received by the histopathology department of a tertiary care facility. The results indicate that a fully automated system that could identify normal duodenal biopsies and biopsies within the spectrum of coeliac disease-associated enteropathy could decrease pathologists’ endoscopic duodenal biopsy workload by up to 80%.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.20944/preprints202503.2274.v1
- https://www.preprints.org/frontend/manuscript/ab985933d2bda88500db75dde3b9e5e0/download_pub
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409016701
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409016701Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20944/preprints202503.2274.v1Digital Object Identifier
- Title
-
Determination of the Relative Frequencies of Expected Diagnoses in Duodenal Biopsies: An Essential Step in Developing an Artificial Intelligence Approach to Diagnostic ClassificationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-31Full publication date if available
- Authors
-
V. Shenoy, Joby James, Amelia B. Williams-Walker, Navya Mohan, Kim Ngan Luu Hoang, J. Williams, Florian Jaeckle, Shelley Evans, Elizabeth J. SoilleuxList of authors in order
- Landing page
-
https://doi.org/10.20944/preprints202503.2274.v1Publisher landing page
- PDF URL
-
https://www.preprints.org/frontend/manuscript/ab985933d2bda88500db75dde3b9e5e0/download_pubDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.preprints.org/frontend/manuscript/ab985933d2bda88500db75dde3b9e5e0/download_pubDirect OA link when available
- Concepts
-
Medical diagnosis, Artificial intelligence, Computer science, Pattern recognition (psychology), Biomedical engineering, Medicine, RadiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409016701 |
|---|---|
| doi | https://doi.org/10.20944/preprints202503.2274.v1 |
| ids.doi | https://doi.org/10.20944/preprints202503.2274.v1 |
| ids.openalex | https://openalex.org/W4409016701 |
| fwci | 0.0 |
| type | preprint |
| title | Determination of the Relative Frequencies of Expected Diagnoses in Duodenal Biopsies: An Essential Step in Developing an Artificial Intelligence Approach to Diagnostic Classification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8514000177383423 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T11396 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.7792999744415283 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3605 |
| topics[1].subfield.display_name | Health Information Management |
| topics[1].display_name | Artificial Intelligence in Healthcare |
| topics[2].id | https://openalex.org/T14400 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.7390999794006348 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3605 |
| topics[2].subfield.display_name | Health Information Management |
| topics[2].display_name | Medical Coding and Health Information |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C534262118 |
| concepts[0].level | 2 |
| concepts[0].score | 0.69981849193573 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q177719 |
| concepts[0].display_name | Medical diagnosis |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5189592242240906 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.41964611411094666 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.3752243220806122 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C136229726 |
| concepts[4].level | 1 |
| concepts[4].score | 0.335688054561615 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q327092 |
| concepts[4].display_name | Biomedical engineering |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.28213247656822205 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C126838900 |
| concepts[6].level | 1 |
| concepts[6].score | 0.2676204741001129 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[6].display_name | Radiology |
| keywords[0].id | https://openalex.org/keywords/medical-diagnosis |
| keywords[0].score | 0.69981849193573 |
| keywords[0].display_name | Medical diagnosis |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5189592242240906 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.41964611411094666 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.3752243220806122 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/biomedical-engineering |
| keywords[4].score | 0.335688054561615 |
| keywords[4].display_name | Biomedical engineering |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.28213247656822205 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/radiology |
| keywords[6].score | 0.2676204741001129 |
| keywords[6].display_name | Radiology |
| language | en |
| locations[0].id | doi:10.20944/preprints202503.2274.v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6309402219 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Preprints.org |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.preprints.org/frontend/manuscript/ab985933d2bda88500db75dde3b9e5e0/download_pub |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20944/preprints202503.2274.v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5019739043 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8306-4215 |
| authorships[0].author.display_name | V. Shenoy |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | V Shenoy |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5022024488 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Joby James |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | J. L. James |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5093351322 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Amelia B. Williams-Walker |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | A. B. Williams-Walker |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5103999599 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Navya Mohan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | N. P.R. Madhan Mohan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5058866430 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5670-1832 |
| authorships[4].author.display_name | Kim Ngan Luu Hoang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | K. N. Luu Hoang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5086596609 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | J. Williams |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | J. Williams |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5033700527 |
| authorships[6].author.orcid | https://orcid.org/0009-0002-4607-6476 |
| authorships[6].author.display_name | Florian Jaeckle |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | F. Jaeckle |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5016136114 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-3242-6017 |
| authorships[7].author.display_name | Shelley Evans |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | S. C. Evans |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5062739895 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-4032-7249 |
| authorships[8].author.display_name | Elizabeth J. Soilleux |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | E. J. Soilleux |
| authorships[8].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.preprints.org/frontend/manuscript/ab985933d2bda88500db75dde3b9e5e0/download_pub |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Determination of the Relative Frequencies of Expected Diagnoses in Duodenal Biopsies: An Essential Step in Developing an Artificial Intelligence Approach to Diagnostic Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8514000177383423 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W4249377076, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.20944/preprints202503.2274.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6309402219 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Preprints.org |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.preprints.org/frontend/manuscript/ab985933d2bda88500db75dde3b9e5e0/download_pub |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20944/preprints202503.2274.v1 |
| primary_location.id | doi:10.20944/preprints202503.2274.v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6309402219 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Preprints.org |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.preprints.org/frontend/manuscript/ab985933d2bda88500db75dde3b9e5e0/download_pub |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20944/preprints202503.2274.v1 |
| publication_date | 2025-03-31 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 54 |
| abstract_inverted_index.a | 122, 145, 153 |
| abstract_inverted_index.18 | 36 |
| abstract_inverted_index.24 | 118 |
| abstract_inverted_index.In | 18 |
| abstract_inverted_index.We | 128 |
| abstract_inverted_index.as | 80 |
| abstract_inverted_index.by | 140, 179 |
| abstract_inverted_index.in | 43 |
| abstract_inverted_index.is | 10 |
| abstract_inverted_index.of | 22, 39, 51, 56, 62, 73, 116, 125, 134, 144, 168 |
| abstract_inverted_index.on | 31 |
| abstract_inverted_index.to | 5, 12, 46, 181 |
| abstract_inverted_index.up | 180 |
| abstract_inverted_index.we | 34 |
| abstract_inverted_index.227 | 109 |
| abstract_inverted_index.The | 149 |
| abstract_inverted_index.all | 135 |
| abstract_inverted_index.and | 15, 67, 90, 106, 163 |
| abstract_inverted_index.for | 27 |
| abstract_inverted_index.key | 11 |
| abstract_inverted_index.our | 44 |
| abstract_inverted_index.the | 1, 20, 48, 71, 130, 141, 166 |
| abstract_inverted_index.6245 | 57 |
| abstract_inverted_index.80%. | 182 |
| abstract_inverted_index.care | 147 |
| abstract_inverted_index.fell | 69 |
| abstract_inverted_index.that | 152, 157 |
| abstract_inverted_index.were | 60, 65, 78, 85, 88, 92 |
| abstract_inverted_index.0.06% | 91 |
| abstract_inverted_index.0.42% | 87 |
| abstract_inverted_index.1.86% | 84 |
| abstract_inverted_index.6.47% | 77 |
| abstract_inverted_index.8.84% | 68 |
| abstract_inverted_index.Rarer | 95 |
| abstract_inverted_index.audit | 133 |
| abstract_inverted_index.based | 30 |
| abstract_inverted_index.cases | 119 |
| abstract_inverted_index.could | 158, 172 |
| abstract_inverted_index.exact | 49 |
| abstract_inverted_index.first | 131 |
| abstract_inverted_index.fully | 154 |
| abstract_inverted_index.novel | 7 |
| abstract_inverted_index.prior | 4 |
| abstract_inverted_index.total | 55 |
| abstract_inverted_index.which | 63, 117 |
| abstract_inverted_index.worth | 38 |
| abstract_inverted_index.73.76% | 64 |
| abstract_inverted_index.biopsy | 177 |
| abstract_inverted_index.centre | 45 |
| abstract_inverted_index.normal | 66, 160 |
| abstract_inverted_index.pylori | 100 |
| abstract_inverted_index.showed | 112 |
| abstract_inverted_index.system | 156 |
| abstract_inverted_index.within | 70, 165 |
| abstract_inverted_index.(3.63%) | 111 |
| abstract_inverted_index.audited | 35 |
| abstract_inverted_index.coeliac | 28, 74, 126, 169 |
| abstract_inverted_index.disease | 29 |
| abstract_inverted_index.present | 129 |
| abstract_inverted_index.results | 150 |
| abstract_inverted_index.showing | 81 |
| abstract_inverted_index.audited, | 61 |
| abstract_inverted_index.biopsies | 41, 59, 110, 138, 162, 164 |
| abstract_inverted_index.decrease | 173 |
| abstract_inverted_index.disease. | 75, 127 |
| abstract_inverted_index.duodenal | 32, 40, 58, 137, 161, 176 |
| abstract_inverted_index.identify | 159 |
| abstract_inverted_index.included | 97 |
| abstract_inverted_index.indicate | 151 |
| abstract_inverted_index.isolated | 113 |
| abstract_inverted_index.managing | 13 |
| abstract_inverted_index.received | 42, 121, 139 |
| abstract_inverted_index.results. | 17 |
| abstract_inverted_index.spectrum | 72, 167 |
| abstract_inverted_index.tertiary | 146 |
| abstract_inverted_index.tumours. | 94 |
| abstract_inverted_index.workload | 178 |
| abstract_inverted_index.adenomas, | 86 |
| abstract_inverted_index.alternate | 24 |
| abstract_inverted_index.automated | 155 |
| abstract_inverted_index.biopsies, | 33 |
| abstract_inverted_index.determine | 47 |
| abstract_inverted_index.diagnoses | 96 |
| abstract_inverted_index.diagnosis | 124 |
| abstract_inverted_index.different | 52 |
| abstract_inverted_index.facility. | 148 |
| abstract_inverted_index.landscape | 3 |
| abstract_inverted_index.long-term | 132 |
| abstract_inverted_index.lymphoma. | 107 |
| abstract_inverted_index.months’ | 37 |
| abstract_inverted_index.approaches | 26 |
| abstract_inverted_index.classified | 79 |
| abstract_inverted_index.definitive | 123 |
| abstract_inverted_index.department | 143 |
| abstract_inverted_index.developing | 6, 23 |
| abstract_inverted_index.diagnoses. | 53 |
| abstract_inverted_index.diagnostic | 2, 8, 25 |
| abstract_inverted_index.endoscopic | 136, 175 |
| abstract_inverted_index.eventually | 120 |
| abstract_inverted_index.infection, | 101 |
| abstract_inverted_index.rejection, | 105 |
| abstract_inverted_index.strategies | 9 |
| abstract_inverted_index.transplant | 104 |
| abstract_inverted_index.Giardiasis, | 102 |
| abstract_inverted_index.carcinomas, | 89 |
| abstract_inverted_index.considering | 19 |
| abstract_inverted_index.enteropathy | 171 |
| abstract_inverted_index.possibility | 21 |
| abstract_inverted_index.proportions | 50 |
| abstract_inverted_index.ulceration, | 98 |
| abstract_inverted_index.Furthermore, | 108 |
| abstract_inverted_index.Helicobacter | 99 |
| abstract_inverted_index.expectations | 14 |
| abstract_inverted_index.non-specific | 82 |
| abstract_inverted_index.Additionally, | 76 |
| abstract_inverted_index.Understanding | 0 |
| abstract_inverted_index.inflammation, | 83 |
| abstract_inverted_index.authenticating | 16 |
| abstract_inverted_index.histopathology | 142 |
| abstract_inverted_index.lymphocytosis, | 115 |
| abstract_inverted_index.neuroendocrine | 93 |
| abstract_inverted_index.intraepithelial | 114 |
| abstract_inverted_index.pathologists’ | 174 |
| abstract_inverted_index.lymphangiectasia, | 103 |
| abstract_inverted_index.disease-associated | 170 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile.value | 0.04095146 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |