Determined admissible sets Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1090/proc/14914
· OA: W2955275914
It is shown, from hypotheses in the region of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="omega squared"> <mml:semantics> <mml:msup> <mml:mi>ω</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding="application/x-tex">\omega ^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> Woodin cardinals, that there is a transitive model of Kripke–Platek set theory containing <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in which all games on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are determined.