DETRs Beat YOLOs on Real-time Object Detection Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2304.08069
The YOLO series has become the most popular framework for real-time object detection due to its reasonable trade-off between speed and accuracy. However, we observe that the speed and accuracy of YOLOs are negatively affected by the NMS. Recently, end-to-end Transformer-based detectors (DETRs) have provided an alternative to eliminating NMS. Nevertheless, the high computational cost limits their practicality and hinders them from fully exploiting the advantage of excluding NMS. In this paper, we propose the Real-Time DEtection TRansformer (RT-DETR), the first real-time end-to-end object detector to our best knowledge that addresses the above dilemma. We build RT-DETR in two steps, drawing on the advanced DETR: first we focus on maintaining accuracy while improving speed, followed by maintaining speed while improving accuracy. Specifically, we design an efficient hybrid encoder to expeditiously process multi-scale features by decoupling intra-scale interaction and cross-scale fusion to improve speed. Then, we propose the uncertainty-minimal query selection to provide high-quality initial queries to the decoder, thereby improving accuracy. In addition, RT-DETR supports flexible speed tuning by adjusting the number of decoder layers to adapt to various scenarios without retraining. Our RT-DETR-R50 / R101 achieves 53.1% / 54.3% AP on COCO and 108 / 74 FPS on T4 GPU, outperforming previously advanced YOLOs in both speed and accuracy. We also develop scaled RT-DETRs that outperform the lighter YOLO detectors (S and M models). Furthermore, RT-DETR-R50 outperforms DINO-R50 by 2.2% AP in accuracy and about 21 times in FPS. After pre-training with Objects365, RT-DETR-R50 / R101 achieves 55.3% / 56.2% AP. The project page: https://zhao-yian.github.io/RTDETR.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2304.08069
- https://arxiv.org/pdf/2304.08069
- OA Status
- green
- Cited By
- 195
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4366400469
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4366400469Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2304.08069Digital Object Identifier
- Title
-
DETRs Beat YOLOs on Real-time Object DetectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-17Full publication date if available
- Authors
-
Wenyu Lv, Shangliang Xu, Y. Zhao, Guanzhong Wang, Jinman Wei, Cheng Cui, Yuning Du, Qingqing Dang, Yi LiuList of authors in order
- Landing page
-
https://arxiv.org/abs/2304.08069Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2304.08069Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2304.08069Direct OA link when available
- Concepts
-
Computer science, Encoder, Detector, Real-time computing, Object detection, Data mining, Speedup, Artificial intelligence, Pattern recognition (psychology), Telecommunications, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
195Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 86, 2024: 104, 2023: 5Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4366400469 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2304.08069 |
| ids.doi | https://doi.org/10.48550/arxiv.2304.08069 |
| ids.openalex | https://openalex.org/W4366400469 |
| fwci | |
| type | preprint |
| title | DETRs Beat YOLOs on Real-time Object Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9907000064849854 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9868999719619751 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7672337293624878 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C118505674 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5867555141448975 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[1].display_name | Encoder |
| concepts[2].id | https://openalex.org/C94915269 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5328652858734131 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[2].display_name | Detector |
| concepts[3].id | https://openalex.org/C79403827 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5018339157104492 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[3].display_name | Real-time computing |
| concepts[4].id | https://openalex.org/C2776151529 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4492180347442627 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[4].display_name | Object detection |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4450991749763489 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C68339613 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43341463804244995 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1549489 |
| concepts[6].display_name | Speedup |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3445817232131958 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.1848195195198059 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C76155785 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[9].display_name | Telecommunications |
| concepts[10].id | https://openalex.org/C111919701 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[10].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7672337293624878 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/encoder |
| keywords[1].score | 0.5867555141448975 |
| keywords[1].display_name | Encoder |
| keywords[2].id | https://openalex.org/keywords/detector |
| keywords[2].score | 0.5328652858734131 |
| keywords[2].display_name | Detector |
| keywords[3].id | https://openalex.org/keywords/real-time-computing |
| keywords[3].score | 0.5018339157104492 |
| keywords[3].display_name | Real-time computing |
| keywords[4].id | https://openalex.org/keywords/object-detection |
| keywords[4].score | 0.4492180347442627 |
| keywords[4].display_name | Object detection |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.4450991749763489 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/speedup |
| keywords[6].score | 0.43341463804244995 |
| keywords[6].display_name | Speedup |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.3445817232131958 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.1848195195198059 |
| keywords[8].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2304.08069 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2304.08069 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2304.08069 |
| locations[1].id | doi:10.48550/arxiv.2304.08069 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2304.08069 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5057254114 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-2523-448X |
| authorships[0].author.display_name | Wenyu Lv |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lv, Wenyu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5021382485 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shangliang Xu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xu, Shangliang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100624537 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9884-8736 |
| authorships[2].author.display_name | Y. Zhao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhao, Yian |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100771420 |
| authorships[3].author.orcid | https://orcid.org/0009-0000-8144-1892 |
| authorships[3].author.display_name | Guanzhong Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wang, Guanzhong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5048516324 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Jinman Wei |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wei, Jinman |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101673629 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4230-4753 |
| authorships[5].author.display_name | Cheng Cui |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Cui, Cheng |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5010944460 |
| authorships[6].author.orcid | https://orcid.org/0009-0007-4995-5472 |
| authorships[6].author.display_name | Yuning Du |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Du, Yuning |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5031021503 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-5483-3778 |
| authorships[7].author.display_name | Qingqing Dang |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Dang, Qingqing |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5100330446 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-7405-7972 |
| authorships[8].author.display_name | Yi Liu |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Liu, Yi |
| authorships[8].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2304.08069 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-04-21T00:00:00 |
| display_name | DETRs Beat YOLOs on Real-time Object Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2058965144, https://openalex.org/W2164382479, https://openalex.org/W2146343568, https://openalex.org/W98480971, https://openalex.org/W2150291671, https://openalex.org/W2013643406, https://openalex.org/W2027972911, https://openalex.org/W2157978810, https://openalex.org/W2597809628, https://openalex.org/W3046370962 |
| cited_by_count | 195 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 86 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 104 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2304.08069 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2304.08069 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2304.08069 |
| primary_location.id | pmh:oai:arXiv.org:2304.08069 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2304.08069 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2304.08069 |
| publication_date | 2023-04-17 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index./ | 184, 188, 195, 245, 249 |
| abstract_inverted_index.M | 223 |
| abstract_inverted_index.(S | 221 |
| abstract_inverted_index.21 | 236 |
| abstract_inverted_index.74 | 196 |
| abstract_inverted_index.AP | 190, 231 |
| abstract_inverted_index.In | 69, 161 |
| abstract_inverted_index.T4 | 199 |
| abstract_inverted_index.We | 94, 210 |
| abstract_inverted_index.an | 45, 124 |
| abstract_inverted_index.by | 35, 115, 133, 168, 229 |
| abstract_inverted_index.in | 97, 205, 232, 238 |
| abstract_inverted_index.of | 30, 66, 172 |
| abstract_inverted_index.on | 101, 108, 191, 198 |
| abstract_inverted_index.to | 14, 47, 85, 128, 140, 150, 155, 175, 177 |
| abstract_inverted_index.we | 23, 72, 106, 122, 144 |
| abstract_inverted_index.108 | 194 |
| abstract_inverted_index.AP. | 251 |
| abstract_inverted_index.FPS | 197 |
| abstract_inverted_index.Our | 182 |
| abstract_inverted_index.The | 0, 252 |
| abstract_inverted_index.and | 20, 28, 58, 137, 193, 208, 222, 234 |
| abstract_inverted_index.are | 32 |
| abstract_inverted_index.due | 13 |
| abstract_inverted_index.for | 9 |
| abstract_inverted_index.has | 3 |
| abstract_inverted_index.its | 15 |
| abstract_inverted_index.our | 86 |
| abstract_inverted_index.the | 5, 26, 36, 51, 64, 74, 79, 91, 102, 146, 156, 170, 217 |
| abstract_inverted_index.two | 98 |
| abstract_inverted_index.2.2% | 230 |
| abstract_inverted_index.COCO | 192 |
| abstract_inverted_index.FPS. | 239 |
| abstract_inverted_index.GPU, | 200 |
| abstract_inverted_index.NMS. | 37, 49, 68 |
| abstract_inverted_index.R101 | 185, 246 |
| abstract_inverted_index.YOLO | 1, 219 |
| abstract_inverted_index.also | 211 |
| abstract_inverted_index.best | 87 |
| abstract_inverted_index.both | 206 |
| abstract_inverted_index.cost | 54 |
| abstract_inverted_index.from | 61 |
| abstract_inverted_index.have | 43 |
| abstract_inverted_index.high | 52 |
| abstract_inverted_index.most | 6 |
| abstract_inverted_index.that | 25, 89, 215 |
| abstract_inverted_index.them | 60 |
| abstract_inverted_index.this | 70 |
| abstract_inverted_index.with | 242 |
| abstract_inverted_index.53.1% | 187 |
| abstract_inverted_index.54.3% | 189 |
| abstract_inverted_index.55.3% | 248 |
| abstract_inverted_index.56.2% | 250 |
| abstract_inverted_index.After | 240 |
| abstract_inverted_index.DETR: | 104 |
| abstract_inverted_index.Then, | 143 |
| abstract_inverted_index.YOLOs | 31, 204 |
| abstract_inverted_index.about | 235 |
| abstract_inverted_index.above | 92 |
| abstract_inverted_index.adapt | 176 |
| abstract_inverted_index.build | 95 |
| abstract_inverted_index.first | 80, 105 |
| abstract_inverted_index.focus | 107 |
| abstract_inverted_index.fully | 62 |
| abstract_inverted_index.page: | 254 |
| abstract_inverted_index.query | 148 |
| abstract_inverted_index.speed | 19, 27, 117, 166, 207 |
| abstract_inverted_index.their | 56 |
| abstract_inverted_index.times | 237 |
| abstract_inverted_index.while | 111, 118 |
| abstract_inverted_index.become | 4 |
| abstract_inverted_index.design | 123 |
| abstract_inverted_index.fusion | 139 |
| abstract_inverted_index.hybrid | 126 |
| abstract_inverted_index.layers | 174 |
| abstract_inverted_index.limits | 55 |
| abstract_inverted_index.number | 171 |
| abstract_inverted_index.object | 11, 83 |
| abstract_inverted_index.paper, | 71 |
| abstract_inverted_index.scaled | 213 |
| abstract_inverted_index.series | 2 |
| abstract_inverted_index.speed, | 113 |
| abstract_inverted_index.speed. | 142 |
| abstract_inverted_index.steps, | 99 |
| abstract_inverted_index.tuning | 167 |
| abstract_inverted_index.(DETRs) | 42 |
| abstract_inverted_index.RT-DETR | 96, 163 |
| abstract_inverted_index.between | 18 |
| abstract_inverted_index.decoder | 173 |
| abstract_inverted_index.develop | 212 |
| abstract_inverted_index.drawing | 100 |
| abstract_inverted_index.encoder | 127 |
| abstract_inverted_index.hinders | 59 |
| abstract_inverted_index.improve | 141 |
| abstract_inverted_index.initial | 153 |
| abstract_inverted_index.lighter | 218 |
| abstract_inverted_index.observe | 24 |
| abstract_inverted_index.popular | 7 |
| abstract_inverted_index.process | 130 |
| abstract_inverted_index.project | 253 |
| abstract_inverted_index.propose | 73, 145 |
| abstract_inverted_index.provide | 151 |
| abstract_inverted_index.queries | 154 |
| abstract_inverted_index.thereby | 158 |
| abstract_inverted_index.various | 178 |
| abstract_inverted_index.without | 180 |
| abstract_inverted_index.DINO-R50 | 228 |
| abstract_inverted_index.However, | 22 |
| abstract_inverted_index.RT-DETRs | 214 |
| abstract_inverted_index.accuracy | 29, 110, 233 |
| abstract_inverted_index.achieves | 186, 247 |
| abstract_inverted_index.advanced | 103, 203 |
| abstract_inverted_index.affected | 34 |
| abstract_inverted_index.decoder, | 157 |
| abstract_inverted_index.detector | 84 |
| abstract_inverted_index.dilemma. | 93 |
| abstract_inverted_index.features | 132 |
| abstract_inverted_index.flexible | 165 |
| abstract_inverted_index.followed | 114 |
| abstract_inverted_index.models). | 224 |
| abstract_inverted_index.provided | 44 |
| abstract_inverted_index.supports | 164 |
| abstract_inverted_index.DEtection | 76 |
| abstract_inverted_index.Real-Time | 75 |
| abstract_inverted_index.Recently, | 38 |
| abstract_inverted_index.accuracy. | 21, 120, 160, 209 |
| abstract_inverted_index.addition, | 162 |
| abstract_inverted_index.addresses | 90 |
| abstract_inverted_index.adjusting | 169 |
| abstract_inverted_index.advantage | 65 |
| abstract_inverted_index.detection | 12 |
| abstract_inverted_index.detectors | 41, 220 |
| abstract_inverted_index.efficient | 125 |
| abstract_inverted_index.excluding | 67 |
| abstract_inverted_index.framework | 8 |
| abstract_inverted_index.improving | 112, 119, 159 |
| abstract_inverted_index.knowledge | 88 |
| abstract_inverted_index.real-time | 10, 81 |
| abstract_inverted_index.scenarios | 179 |
| abstract_inverted_index.selection | 149 |
| abstract_inverted_index.trade-off | 17 |
| abstract_inverted_index.(RT-DETR), | 78 |
| abstract_inverted_index.decoupling | 134 |
| abstract_inverted_index.end-to-end | 39, 82 |
| abstract_inverted_index.exploiting | 63 |
| abstract_inverted_index.negatively | 33 |
| abstract_inverted_index.outperform | 216 |
| abstract_inverted_index.previously | 202 |
| abstract_inverted_index.reasonable | 16 |
| abstract_inverted_index.Objects365, | 243 |
| abstract_inverted_index.RT-DETR-R50 | 183, 226, 244 |
| abstract_inverted_index.TRansformer | 77 |
| abstract_inverted_index.alternative | 46 |
| abstract_inverted_index.cross-scale | 138 |
| abstract_inverted_index.eliminating | 48 |
| abstract_inverted_index.interaction | 136 |
| abstract_inverted_index.intra-scale | 135 |
| abstract_inverted_index.maintaining | 109, 116 |
| abstract_inverted_index.multi-scale | 131 |
| abstract_inverted_index.outperforms | 227 |
| abstract_inverted_index.retraining. | 181 |
| abstract_inverted_index.Furthermore, | 225 |
| abstract_inverted_index.high-quality | 152 |
| abstract_inverted_index.practicality | 57 |
| abstract_inverted_index.pre-training | 241 |
| abstract_inverted_index.Nevertheless, | 50 |
| abstract_inverted_index.Specifically, | 121 |
| abstract_inverted_index.computational | 53 |
| abstract_inverted_index.expeditiously | 129 |
| abstract_inverted_index.outperforming | 201 |
| abstract_inverted_index.Transformer-based | 40 |
| abstract_inverted_index.uncertainty-minimal | 147 |
| abstract_inverted_index.https://zhao-yian.github.io/RTDETR. | 255 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |